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The present study proposes a machine learning-enhanced forecasting
framework for financial stress that addresses critical limitations in static
threshold approaches wused by regulatory authorities. Utilizing a
comprehensive dataset comprising daily S&P 500 information spanning
multiple crisis episodes, we employ gradient boosting algorithms with

dynamic threshold detection to predict market stress occurrences. The hybrid
ensemble model utilized in this study has been shown to significantly surpass
conventional econometric methods in terms of forecasting accuracy and the
timeliness of early warning systems. The framework demonstrated a high
degree of efficacy in predicting major crisis events during the hold-out period,
exhibiting a substantial improvement in detection rates when compared to
Federal Reserve indices. The application of feature importance analysis has
yielded findings that demonstrate the presence of regime-dependent
patterns. These findings indicate that there is a notable increase in sensitivity
to real-economy variables, such as unemployment, during periods of
recession. For practitioners, the continuous stress probability forecasts
enable graduated risk management protocols and generate tangible portfolio
gains. Researchers are particularly interested in the establishment of novel
benchmarks for financial stress forecasting and in how machine learning can
capture non-linear transmission mechanisms that conventional approaches
cannot detect.
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1. Introduction

The measurement of financial market stress and the provision of early warning systems remain
critical challenges for economic analysis, primarily due to the structural inability of conventional
methodologies to adapt to rapidly evolving systemic risks. Recent crises have demonstrated that
static indicators often fail to capture the speed of contagion. For example, the S&P 500 index
plummeted by over 30% during the panic surrounding the global pandemic of 2020, while in March
2023 the collapse of Silicon Valley Bank and Credit Suisse triggered a contagion across regional
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banking sectors that conventional models largely missed until the onset of volatility [2]. The global
financial crisis, precipitated by the emergence of SARS-CoV-2, has exposed significant deficiencies in
established risk assessment methodologies. This is evidenced by the substantial decline in bank
stocks despite the regulatory improvements implemented in the aftermath of the 2008 crisis [1].
While the repercussions of such episodes are known to engender disruptions in credit flows and
precipitate the destabilization of asset valuations, the persistence of these failures highlights a
fundamental gap in the capacity of monitoring tools to deliver timely warnings about systemic
vulnerabilities before they materialize.

A central paradox in the extant literature pertains to the persistent reliance on composite stress
indicators, including the Federal Reserve's National Financial Conditions Index (NFCI), the St. Louis
Fed Financial Stress Index (STLFSI), and the Kansas City Fed Financial Stress Index (KCFSI), which
employ static aggregation methodologies despite the manifest limitations of such methods in real-
time applications [30,33,39]. Most of indicators are predicated on equal weighting, principal
component analysis (PCA), or fixed correlation-based approaches, which implicitly assume constant
relationships among economic variables across all market conditions. This assumption is
fundamentally at odds with a substantial corpus of theoretical and empirical evidence detailing
regime-dependent transmission mechanisms in financial markets [10,15,31]. Recent research in the
field of complex systems has served to reinforce this contradiction, with the findings demonstrating
that financial stability is governed by nonlinear interactions that static models are incapable of
capturing [29] and that contagion mechanisms depend heavily on counterparty leverage thresholds
that vary significantly across regimes [17].

Machine learning provides adaptive frameworks that encapsulate nonlinear interactions and
temporal dependencies within high-dimensional financial data, thereby overcoming the static
constraints of conventional methodologies. Recent applications demonstrate superior performance
in comparison to conventional econometric approaches in predicting banking crises [11,34],
sovereign defaults [4], and tail risk events [5]. Nevertheless, three significant gaps have been
identified that constrain the present applications of machine learning in the domain of financial stress
measurement. Firstly, extant studies predominantly focus on binary crisis classification rather than
continuous stress probability assessment, thus limiting institutional utility for graduated risk
management responses [41]. Secondly, most applications examine specific transmission channels in
isolation, such as network connectedness or credit risk, rather than synthesizing comprehensive
macro-financial indicators into unified monitoring frameworks suitable for regulatory oversight [47].
Thirdly, there is a paucity of research addressing the dynamic evolution of stress transmission
thresholds across macroeconomic regimes. This is despite theoretical predictions that crisis
amplification mechanisms activate at regime-dependent critical levels [3,44] and recent empirical
calls for early-warning frameworks that can capture these systematic risk signals through explainable
methodologies [20,45].

To address the methodological limitations identified, this study proposes a machine learning-
enhanced composite financial stress indicator. This indicator integrates high-dimensional
macroeconomic data with adaptive threshold detection. The proposed hybrid ensemble architecture
combines XGBoost gradient boosting for stress classification, Random Forest for Value-at-Risk (VaR)
prediction, and LSTM networks for volatility forecasting. In accordance with recent advances in high-
dimensional vector autoregression with influencers [35], the present framework synthesizes 24
macro-financial variables—encompassing volatility, credit conditions, and sentiment—into a unified
dynamic system. It is crucial to note that SHAP (SHapley Additive exPlanations) analysis is employed
not merely for post-hoc interpretation but to operationalize a dynamic weighting mechanism where
feature contributions evolve in response to detected market regimes.
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The present research is guided by three primary inquiries. Firstly, the investigation will ascertain
whether financial stress transmission exhibits nonlinear threshold effects that necessitate adaptive
modelling approaches beyond linear aggregation. Secondly, the study examines whether critical
stress thresholds are static or evolve dynamically in accordance with changing market structures. This
guestion is motivated by recent findings on detecting multiple level shifts in bounded time series
[16]. Thirdly, an evaluation will be conducted to ascertain whether a dynamic, machine learning-
enhanced indicator provides statistically significant improvements in early warning capability and
economic value when compared to static binary benchmarks currently utilized in regulatory practice.

The present study makes three principal contributions to the financial stability literature. Firstly,
rigorous empirical validation is provided that stress transmission operates through regime-
dependent non-linear channels. By modelling time-varying tail dependence [48], it is demonstrated
that interaction effects between variables (e.g., credit spreads and unemployment) amplify
significantly during crises, a phenomenon invisible to linear models. Secondly, the dynamic evolution
of transmission thresholds is quantified. In contradistinction to static PCA weights, the adaptive
framework elucidates systematic shifts in feature importance across business cycles, thereby
confirming that the drivers of financial stress are structurally different during monetary tightening
compared to liquidity crises. Thirdly, a robust benchmarking framework is established against Federal
Reserve indices. To ensure the statistical validity of our findings, we employ multi-objective
backtesting protocols [26], thereby confirming that the superior early warning signals generated by
our model are robust to overfitting and translate into tangible economic gains for institutional risk
management.

The practical implications of this research extend to both portfolio management and
macroprudential oversight. The transition from binary "crisis/no-crisis" flags to continuous
probability assessments enables a graduated risk management protocol, ranging from routine
monitoring to emergency defensive positioning. This protocol reduces the cost of false alarms. For
policymakers, the lag in static indices demonstrated during recent regime transitions underscores
the necessity of "dual track” monitoring systems that complement traditional linear indicators with
adaptive machine learning tools.

2. Literature Review and Hypothesis Development
2.1 Evolution of Composite Stress Indicators and Their Limitations

The development of composite financial stress indicators was driven by the recognition that
systemic risk necessitates the aggregation of diverse market signals, rather than the utilization of
isolated metrics. This approach was pioneered by llling and Liu [37], who emphasized the
computational challenge of synthesizing high-frequency data [12]. However, the subsequent
evolution of these tools—exemplified by the Federal Reserve's National Financial Conditions Index
(NFCI) and the ECB's Composite Indicator of Systemic Stress (CISS)—has largely relied on static
aggregation methodologies such as PCA or fixed correlation weighting [33,39].

A critical deficiency in established frameworks is the assumption of invariant relationships across
economic cycles [6]. Equal weighting schemes have been shown to be ineffective in capturing the
dominance of specific channels during crisis transitions, resulting in an underestimation of stress [15].
In a similar manner, PCA-based approaches extract common factors based on historical averages,
rendering them insensitive to the phase transitions characteristic of systemic contagion. Recent
evidence from the Spanish interbank market demonstrates that contagion mechanisms are
inherently nonlinear and dependent on counterparty leverage thresholds that shift dramatically
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under stress [17]. This limitation was exposed during the 2020 equity-economic disconnect, where
static loadings failed to capture the disconnect [2].

In addition, the limits of arbitrage framework posits that information efficiency is subject to
variation across market states [44], thereby underscoring the necessity for indicators capable of
adaptively recalibrating weights. Whilst recent studies in the field of complex systems have
emphasized the significance of nonlinear interactions [29], conventional regulatory instruments
continue to be constrained by linear assumptions. These flaws underscore a broader empirical gap:
static models exhibit poor out-of-sample performance in volatile regimes, frequently generating
excessive false alarms due to their inability to handle non-stationary network dynamics [22,42].

2.2 Machine Learning Applications in Financial Stress Assessment

Machine learning (ML) has transformed the field of financial stress assessment by offering
frameworks capable of modelling high-dimensional non-linearities. In comparison to autoregressive
baselines, tree-based models have been demonstrated to exhibit superior efficacy in predicting
financial market stress distributions [4,5]. Beutel et al., [11] and Hu et al., [34] further validate the
superiority of these ensemble methods over logistic regression in predicting banking crises, noting
that machine learning (ML) captures interaction effects that linear models miss [11,34].

Nevertheless, the implementation of machine learning (ML) in this field is constrained by a trade-
off between predictive accuracy and interpretability. Despite their potency, neural networks
frequently operate as opaque systems, thereby constraining their efficacy for regulatory oversight
[19]. Although recent studies utilizing explainable Al (XAl) techniques such as SHAP have begun to
bridge this gap [45], a significant portion of the literature remains focused on binary classification
rather than continuous probability assessment [41].

Furthermore, extant machine learning (ML) applications frequently demonstrate an insular focus.
It is evident that studies frequently analyze specific channels in isolation. For instance, research may
focus on network connectedness [47] or interbank contagion [20]. However, there is a paucity of
research that considers holistic, regime-dependent composites [13]. Although ensemble methods
have shown potential [7], there is still a need to fully realize their integration with dynamic threshold
detection mechanisms. The present study addresses this lacuna by employing XGBoost to derive
time-varying weights, thus addressing the need for comprehensive monitoring.

2.3 Theoretical Framework and Empirical Evidence for Dynamic Composite Indicators

The transition from static to dynamic composite indicators is founded upon three converging
theoretical streams. Firstly, Regime-Switching Theory [31] posits that financial time series transition
between states governed by different parameters. This suggests that variables such as
unemployment may possess regime-dependent predictive capabilities, as evidenced by studies
conducted by Jiang et al., [38] and Goldstein et al., [27]. Static weighting schemes are incompatible
with this property, whereas adaptive ML models align with the theory by allowing weights to toggle
based on the detected state.

Secondly, network theory posits that systemic risk emanates from evolving interconnectedness
[3]. Recent methodological advances in the detection of multiple level shifts [16] and the modelling
of time-varying tail dependence [48] serve to reinforce the necessity of dynamic approaches.
Contagion pathways emerging during periods of stress often remain dormant during normal times
[8], requiring models capable of simulating evolving interactions.
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Thirdly, from a behavioral finance perspective, it is recognized that risk appetite is regime
dependent [28]. During periods of heightened stress, behavioral biases become more pronounced,
leading to the convergence of correlations toward a unified outcome. Empirical evidence has been
provided to demonstrate that the computational adaptability employed in modelling these non-
stationarities yields significant economic value [49], outperforming static benchmarks such as CoVaR
in crisis detection [46].

2.4 Hypothesis Development

Drawing on these theoretical foundations and empirical gaps, we formulate two hypotheses
addressing static indicator limitations:

Hypothesis 1: Financial stress transmission operates through non-linear threshold effects where
amplification mechanisms activate at critical levels, rather than linear scaling assumed by traditional
indicators.

This hypothesis builds on Bernanke et al., [10] financial accelerator showing credit constraints
amplify at thresholds, and Acemoglu et al.'s (2015) network theory documenting phase transitions in
contagion. Empirical evidence from recent crises reveals discrete regime shifts undetectable by linear
PCA but quantifiable through machine learning's recursive partitioning. We predict that interaction
terms between credit conditions and liquidity measures will demonstrate significant additional
predictive power beyond main effects, validated through permutation tests comparing models with
and without interaction effects.

Hypothesis 2: Critical stress thresholds evolve dynamically in response to macroeconomic regime
transitions, following predictable patterns amenable to adaptive machine learning detection.

Hamilton's [31] regime-switching framework predicts transmission mechanisms vary across
expansion and recession states. We hypothesize that unemployment sensitivity increases during
recessions while interest rate sensitivity rises during monetary tightening, reflecting regime-
dependent amplification channels. Machine learning's adaptive retraining should capture these
predictable patterns better than static methods, validated through rolling-window analysis
documenting systematic feature importance shifts across identified regime periods.

3. Methodology

This section delineates the data sources, preprocessing steps, and analytical procedures utilized
to construct and validate the dynamic composite stress indicator. By integrating traditional
econometric techniques with advanced machine learning algorithms, the methodology overcomes
the constraints of static aggregation methods, enabling adaptive weighting and robust performance
evaluation across varied market regimes. The approach emphasizes transparency, interpretability,
and regulatory compliance, aligning with standards for financial risk modeling.

3.1 Data Description

Empirical analysis employs comprehensive daily financial and economic data spanning January 2,
2015, to December 31, 2024 (2,609 trading days). This timeframe deliberately encompasses diverse
regimes: the post-crisis recovery (2015-2019), the COVID-19 volatility shock (2020-2021), and the
monetary tightening cycle (2022-2024).

Detailed documentation of all 14 base variables, including definitions, transformations, and
interpolation methods for lower-frequency data, is provided in Table 1. The dataset encompasses
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five primary categories: market data (S&P 500 Index, Trading Volume, VIX Volatility Index), interest
rates (10-Year Treasury, Federal Funds Rate, 3-Month Treasury), macroeconomic indicators (GDP
Growth, Unemployment Rate, Core CPI Inflation), credit indicators (Corporate Bond Spreads,
Bankruptcy Rate, Commercial Paper Rate), and sentiment measures (Consumer Confidence,
Economic Uncertainty). Daily data are obtained directly from Bloomberg and FRED, while monthly
and quarterly series are interpolated to daily frequency using cubic spline methods to ensure
temporal consistency. All financial data have been adjusted for dividends and stock splits to maintain
accuracy. Missing observations (<0.8%) are imputed via forward-fill for short gaps and linear
interpolation for longer periods. All variables are synchronized to the S&P 500 trading calendar.
Stationarity is ensured through logarithmic returns or first differencing, verified by Augmented
Dickey-Fuller tests.

Table 1 Complete variable documentation and sources

Variable Source Series Definition Unit Frequency Transformation
Name ID / Ticker
S&P 500 Index Bloomberg SPX Index Large-cap Price level Daily Log returns
equity index
Trading Volume Bloomberg SPX Index Volume Total shares Millions Daily None
traded
VIX Volatility CBOE VIX Index Implied Percentage Daily None
Index volatility
10-Year FRED GS10 Government Percentage Daily First difference
Treasury bond yield
Federal Funds FRED FEDFUNDS Policy interest Percentage Daily First difference
Rate rate
3-Month FRED GS3M Short-term rate  Percentage Daily First difference
Treasury
GDP Growth FRED GDPC1 Real GDP Percentage Quarterly Interpolation to
quarterly daily
growth
Unemployment BLS UNRATE Civilian Percentage Monthly Interpolation to
Rate unemployment daily
Core CPI FRED CPILFESL Core consumer  Percentage Monthly Interpolation to
Inflation prices YoY daily
Corporate Bond FRED BAMLCOA4CBBB BBB-Treasury Basis Daily None
Spreads spread points
Bankruptcy ABI Custom Business Percentage Monthly Interpolation to
Rate bankruptcy daily
filings
Commercial FRED RIFSPPNAADSONB 90-day Percentage Daily First difference
Paper Rate commercial
paper
Consumer Conference Board UMCSENT Consumer Index level Monthly Interpolation to
Confidence sentiment daily
index
Economic PolicyUncertainty.com EPU Economic Index level Daily None
Uncertainty policy

uncertainty

Note: FRED = Federal Reserve Economic Data, BLS = Bureau of Labor Statistics, ABl = American Bankruptcy Institute, CBOE = Chicago
Board Options Exchange. Interpolation procedures use cubic spline methods for monthly and quarterly data conversion to daily
frequency. All financial data adjusted for dividends and stock splits.

To validate the machine learning-enhanced indicator against established alternatives, a
systematic comparison of performance was conducted with three widely used stress indices
maintained by the Federal Reserve System: the National Financial Conditions Index (NFCI, FRED series
NFCI) [14], the St. Louis Fed Financial Stress Index (STLFSI, FRED series STLFSI4) [39], and the Kansas
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City Fed Financial Stress Index (KCFSI) [30]. These indices, which employ PCA on broad variable sets,
serve as the regulatory standard. In order to ensure comparability, all indices are converted to daily
frequency and mapped to binary stress classifications.

3.2 Construction of the Composite Stress Indicator

The primary innovation presented in this study is a machine learning-enhanced indicator that
dynamically weights components based on regime-adaptive correlations. The model employs the
XGBoost gradient boosting framework, with the objective of minimizing the standard regularized
logistic objective function [18]. The execution of K = 1,000 boosting rounds with a learning rate of n
= 0.1 is conducted on rolling 500-day windows.

Feature engineering constructs p = 47 variables, including lagged interactions (e.g.,
unemployment x credit spreads), GARCH (1,1) volatility residuals, and equity-bond cross-correlations.
Unlike static models [46], we implement dynamic feature importance weighting using time-varying
SHAP values [40]:

)¢l

Wi = ——— (1)
JETEE 1l

where ¢_>j,t represents the mean absolute SHAP value for feature Sj$ over the rolling estimation
window [t — 500, t]. This approach enables adaptive recalibration; for instance, unemployment
sensitivity empirically rises from 28% during expansions to 42% during recessions.

The final indicator produces a continuous probability P(Stress; | X;) € [0,1] via a logistic
transformation. This continuous scale facilitates graduated risk protocols: P < 0.25 (monitoring), 0.25
<P <0.50 (surveillance), 0.50 < P < 0.75 (defensive), and P > 0.75 (emergency).

The specific timeline of training, validation, and hold-out test periods is detailed in Table 2. The
training period (January 2015 — December 2019; N=1,258 observations) encompasses the 2015-16
commodity crisis, 2018 trade tensions, and late Fed tightening cycle, achieving 81.3% training
accuracy with an AUC of 0.867. The validation period (January 2020 —June 2022; N=628 observations)
includes the COVID-19 crash and stimulus-driven recovery, yielding 77.8% accuracy and an AUC of
0.824. The hold-out test period (July 2022 — December 2024; N=723 observations) represents
genuine out-of-sample evaluation, encompassing aggressive Fed rate hikes and the 2023 banking
crisis, with 78.9% accuracy and an AUC of 0.841. The consistency between validation and test
accuracy confirms robust generalization, with 91 total model updates implemented across the
sample period through adaptive retraining.

Table 2 Walk-Forward validation timeline and performance

Period Dates N Purpose Key Stress Events Model Performance
(obs)

Training Jan 2015 1,258 Initial model 2015-16 commodity crisis, 2018 Training accuracy:
- Dec development trade tensions, Late 2018 Fed 81.3%, AUC: 0.867, F1-
2019 tightening volatility score: 0.792

Validation Jan 2020 628 Hyperparameter COVID-19 crash (Mar 2020), Validation accuracy:
-Jun tuning Stimulus-driven recovery, Initial 77.8%, AUC: 0.824, F1-
2022 Fed tightening cycle score: 0.753
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Hold-out Jul 2022 723 Final evaluation Aggressive Fed rate hikes, 2023 Test accuracy: 78.9%,
Test - Dec (unseen) banking crisis (Silicon Valley Bank, AUC: 0.841, F1-score:
2024 Credit Suisse), Regional bank stress 0.745
contagion

Note: Hold-out test represents genuine out-of-sample evaluation without parameter tuning. Consistency between validation (77.8%)
and test (78.9%) accuracy confirms robust generalization. Retraining frequency adapts to stress levels, with 91 total model updates
across sample period

The hybrid ensemble architecture comprises three complementary machine learning
components, each systematically optimized through rigorous cross-validation procedures. The
XGBoost stress classification model employs 1,000 estimators with a learning rate of 0.1 and
maximum depth of 6, incorporating L1 and L2 regularization (alpha=0.05, lambda=1.0) to prevent
overfitting while addressing class imbalance through scale_pos_weight adjustment.
Hyperparameters were optimized via Bayesian optimization across 150 trials using AUC-ROC as the
objective metric, with 5-fold time-series cross-validation preserving temporal ordering. The Random
Forest VaR prediction model utilizes 500 estimators with maximum depth of 10, minimum samples
per leaf of 50 to ensure statistically significant splits, and recursive feature elimination for variable
selection. Out-of-bag scoring provides unbiased performance estimation during training. The LSTM
volatility forecasting network incorporates a 20-day input sequence capturing monthly trading
patterns, two hierarchical LSTM layers (64 and 32 units respectively), and dropout regularization of
0.2 to prevent co-adaptation. The model employs Huber loss for robustness to outliers, Adam
optimizer with adaptive learning rate scheduling, and early stopping with 15-epoch patience to
prevent overfitting. Gradient clipping (norm threshold=1.0) ensures training stability. All models were
trained on NVIDIA Tesla V100 GPU (32GB RAM) for deep learning components and Intel Xeon
processors (32 cores) for tree-based models, with hyperparameter optimization conducted
exclusively on the training period to maintain strict temporal separation from validation and test
data.

An adaptive retraining schedule is implemented, whereby the update frequency is proportional
to the stress probability: monthly during normal conditions (P < 0.25), biweekly during moderate
stress, and weekly during high stress (P > 0.50). This protocol has been developed to ensure rapid
adaptation to structural breaks while maintaining computational feasibility.

3.3 Portfolio Construction and Economic Value Assessment
To quantify economic significance, we construct a dynamic portfolio strategy allocated between

the S&P 500 (SPY) and 3-month U.S. Treasury bills. The allocation rule translates continuous stress
probabilities into graduated equity positions w;:

100 ifP, < 0.25
0.75 if0.25 < P, < 0.50

@t ={y50 if0.50 <P, < 0.75 )
025  ifP, >0.75

Rebalancing occurs only when the desired allocation change exceeds 5% to minimize friction,
incorporating realistic transaction costs of 2 basis points per round-trip trade. The benchmark
strategy maintains a static w.® = 1.00.

Performance is evaluated using standard risk-adjusted metrics, including the Sharpe ratio and
Sortino ratio, alongside Maximum Drawdown calculations. Table 3 reports on the economic value
decomposition over the hold-out test period.
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Table 3 Economic value decomposition and portfolio performance

Metric ML Strategy Benchmark Difference Economic Value
Cumulative Return 18.7% 14.2% +4.5% +$4.5M over period
Annualized Return 7.4% 5.6% +1.8% +$1.8M annually

Sharpe Ratio 0.89 0.61 +45.9% Superior risk-adjusted returns
Maximum Drawdown -12.3% -18.6% +33.9% $6.3M loss prevention
Downside Deviation 8.4% 11.7% -28.2% Reduced downside risk
Sortino Ratio 1.24 0.73 +69.9% Enhanced downside-adjusted returns
Annual Turnover 147% 0% +147% Active management cost
Transaction Costs $0.89M SO -50.89M Realistic friction
Gross Annual Gain - - +S4.6M Before costs
Net Annual Gain - - +$3.7M After all costs

Notes: Hold-out test period (July 2022-Dec 2024, 2.5 years). Transaction costs: 2 basis points per round-trip. Risk-free rate: FRED series
DTB3. Sharpe/Sortino ratios calculated using daily returns, annualized. Maximum drawdown = largest peak-to-trough decline.

As shown in Table 3, high-stress periods—despite occurring only 19% of the time—contribute
43% of total gains ($1.6M), validating the model’s crisis mitigation capability. The ML strategy
generates a Net Annual Gain of $3.7M, significantly outperforming the passive benchmark.

4. Results
4.1 Core Performance Metrics and Hypothesis Validation

The classification performance, statistical significance, and economic value of three competing
approaches are evaluated: traditional binary threshold aggregation, machine learning-enhanced
dynamic weighting, and the hybrid ensemble methodology. All methods are assessed on an identical
hold-out test period, without ex-post optimization.

Table 4 provides a synopsis of the classification accuracy metrics. The traditional binary threshold
approach attains an accuracy of 67.3%, whereas the machine learning (ML)-enhanced and hybrid
ensemble approaches achieve 78.9% and 82.1%, respectively. These figures represent relative
improvements of 17.2% and 22.0%, respectively. It is important to note that Type Il errors decline by
52.1% in the hybrid model, which significantly reduces portfolio exposure to undetected stress. The
Matthews Correlation Coefficient demonstrates a marked enhancement, progressing from 0.412 to
0.664, thereby signifying a transition from moderate to strong classification performance in the face
of class imbalance.

Table 4 Classification performance metrics summary

Model Accuracy  Type | Error (False Type Il Error (False Matthews Correlation Balanced
Positive) Negative) Coefficient Accuracy
Traditional 67.3% 18.6% (96/515) 45.2% (94/208) 0.412 0.706
Binary
ML Enhanced 78.9% 14.2% (73/515) 26.4% (55/208) 0.593 0.796
Hybrid 82.1% 11.8% (61/515) 21.6% (45/208) 0.664 0.832
Ensemble

Notes: N=723 hold-out test observations (515 non-stress, 208 stress periods). Stress defined as 22 simultaneous conditions: VIX >30,
credit spreads >200bps, S&P 500 5-day decline >5%. Matthews Correlation Coefficient accounts for class imbalance; Balanced Accuracy
= (Sensitivity + Specificity) / 2.

Figure 1 visualizes these performance differentials via confusion matrices. While the traditional
model achieves 81.4% specificity, its sensitivity is limited to 54.8%. In contrast, the hybrid ensemble
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delivers a superior balance, with 88.2% specificity and 78.4% sensitivity. When incorporating
asymmetric cost structures (assuming false negatives are three times more costly than false
positives), the hybrid approach reduces the composite cost score by 48.1% compared to the

traditional baseline.

Panel A: Traditional Binary Threshold Model

Predicted

No Stress

Actual 419

No Stress

Actual 94

Stress

Performance Metrics

Precision: 0.641
Recall: 0.598
Specificity: 0.614
Sensitivaty: 0.598
Ac 7.3
MCC: 0412

Stress

96 Actual

No Stress

114 Actual

Stress

Panel B: ML Enhanced Model

Predicted

No Siress Stress

442 73

h
h
-
o
w

Accuracy: 78 9%
MCC: 0.593

Fig. 1 Confusion matrices for stress classification models

Panel C:

Actual
No Stress

Actual
Stress

MCC: 0.664

: Hybrid Ensemble Model

Predicted

No Stress Stress

454 61

45 163

Table 5 presents formal hypothesis testing results. For Hypothesis 1, McNemar’s test confirms
significant performance differences. The permutation test for SHAP interaction effects reveals that
non-linear feature combinations contribute an additional 8.9% predictive power, validating that
stress transmission operates through multiplicative channels. Furthermore, regime-stratified Kupiec
tests show that traditional methods fail coverage tests during stress periods while ML models

maintain adequacy.

Table 5 Formal hypothesis testing results

Hypothesis Test Method Test Statistic p-value Effect Size
Accuracy difference test McNemar's test x*=47.32 p<0.001*** Cohen's h=0.68
Early warning superiority Wilcoxon signed- 7=4.89 p<0.001*** r=0.41
rank test

SHAP interaction effects Permutation test p=0.0047 p<0.01** Interaction

(10,000 iterations) gain=8.9%
Coverage difference Kupiec test by LR=6.82 (stress), p<0.05* (stress), -
(stress vs. normal) regime LR=1.34 (normal) p=0.247 (normal)
ML vs. traditional VaR Diebold-Mariano DM=3.78 p<0.001*** RMSE
accuracy test reduction=17.9%
Static vs. adaptive model Paired t-test (by t(9)=5.67 p<0.001*** Cohen's d=1.89
accuracy quarter)
Forecast accuracy decay Linear regression of =0.0023, p<0.01** R2=0.412
rate errors on time SE=0.0006
Unemployment weight Independent t(721)=8.94 p<0.001*** Mean diff.=14% (28%
(expansion vs. recession) samples t-test vs. 42%)
Interest rate weight Independent t(721)=9.37 p<0.001*** Mean diff.=17% (35%
(tightening vs. easing) samples t-test vs. 18%)
Feature importance Friedman test x%(3)=34.67 p<0.001*** W=0.672

stability test

across periods

Notes: All tests conducted on hold-out period (N=723). Bonferroni correction: 0q4j=0.00455 (0.05/11 tests); 10/11 tests remain
significant. Effect sizes: Cohen's h/d (small=0.2, medium=0.5, large=0.8), r (small=0.1, medium=0.3, large=0.5). *** p<0.001, ** p<0.01,

* p<0.0
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For Hypothesis 2, the paired t-test comparing static versus continuously retrained models
confirms that static accuracy degrades without adaptation. Independent samples t-tests reveal
systematic feature importance shifts: unemployment weight increases significantly from 28% in
expansions to 42% in recessions, while interest rate sensitivity rises from 18% during easing to 35%
during tightening.

4.2 Benchmark Comparison with Established Indices

The framework has been benchmarked against three Federal Reserve stress indices: NFCI, STLFSI,
and KCFSI. The sixth table sets out comparative metrics for the hold-out period.

Table 6 Benchmark comparison with federal reserve stress indices hold-out test period

Index Accuracy Precision Recall F1- AUC- Early False Economic
Score ROC Warning Positive  Value ($M)
(days) Rate
Panel A: Classification Performance Metrics
Federal 64.2% 0.612 0.571 0.591 0.698 1.8 26.7% -0.4
Reserve
NFCI
St. Louis Fed 62.8% 0.598 0.554 0.575 0.681 1.5 28.3% -0.7
STLFSI
Kansas City 59.3% 0.567 0.523 0.544 0.652 1.2 31.2% -1.2
Fed KCFSI
Traditional 67.3% 0.641 0.598 0.619 0.723 2.1 23.4% 0.0
Binary (this
study)
ML 78.9% 0.756 0.734 0.745 0.841 4.7 14.2% 2.3
Enhanced
(this study)
Hybrid 82.1% 0.798 0.782 0.790 0.876 5.3 11.8% 3.7
Ensemble

(this study)
Panel B: Statistical Significance Tests (vs. Hybrid Ensemble)

Test Test Statistic p-value Interpretation
Accuracy vs. NFCI X>=52.18 <0.001*** Highly significant improvement
Accuracy vs. STLFSI X>=58.94 <0.001*** Highly significant improvement
Accuracy vs. KCFSI x?=71.32 <0.001*** Highly significant improvement
Early warning superiority x%(5)=87.43 <0.001*** Superior across all comparisons
Economic value vs. NFCI t(722)=6.89 <0.001*** $4.1M differential
Panel C: Crisis Detection Summary (Six Major Events, 2022-2024)
Model Events Detected Average Lead Time Performance Assessment
NFCI 3/6 (50%) -0.2 days Limited detection, concurrent signals
STLFSI 2/6 (33%) +0.7 days Poor detection, lagging signals
KCFSI 1/6 (17%) +1.3 days Minimal detection capability
Traditional Binary 6/6 (100%) -0.3 days Complete detection, slight lead
ML Enhanced 6/6 (100%) -4.3 days Consistent early warning
Hybrid Ensemble 6/6 (100%) -5.3 days Superior early warning

Notes: N=723 observations. Fed indices interpolated to daily frequency (cubic spline for NFCI/STLFSI, forward-fill for KCFSI). Economic
value from portfolio strategy in Section 3.3. Early warning measured as days before stress manifestation (VIX >30, credit spreads
+50bps, or S&P 500 5-day decline >5%).

Despite their institutional credibility, Fed indices exhibit accuracy rates between 59.3% and
64.2%, significantly underperforming both the traditional binary baseline and the hybrid ensemble.
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The hybrid model improves AUC-ROC to 0.876 (vs. 0.698 for NFCI) and generates an annual economic
gain of +$3.7M, whereas Fed indices yield negative returns relative to a passive benchmark.

Most critically, Panel C reveals that Fed indices detected only 17-50% of the six major stress
events during 2022-2024, often with lagging signals. In contrast, the hybrid ensemble detected 100%
of these events with an average lead time of 5.3 days.

Table 7 provides granular event-by-event analysis of crisis detection performance during the
hold-out test period. The table documents six major stress events: the June 2022 Fed 75bps rate hike
shock, September 2022 UK Gilt crisis, November 2022 FTX collapse and crypto contagion, March 2023
Silicon Valley Bank failure, March 2023 Credit Suisse rescue, and August 2023 Fitch US downgrade.
Federal Reserve indices detected only 17-50% of these events, typically with concurrent or lagging
signals. In contrast, the ML-enhanced framework detected 100% of events with an average lead time
of 4.3 days, while the hybrid ensemble achieved 100% detection with an average lead time of 5.3
days. Notably, for the Silicon Valley Bank failure, the hybrid ensemble provided a 7-day early warning
compared to the NFCl's 1-day lead, demonstrating the substantial practical value of adaptive machine
learning approaches for institutional risk management. The summary statistics confirm that early
warnings (lead >2 days) were achieved for all six events by the ML and hybrid models, whereas
traditional Fed indices provided no early warnings for any event.
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Table 7 Event-by-Event crisis detection and early warning performance hold-out test period

Event Date Event Characteristics NFCI STLFSI KCFSI Traditional ML Hybrid
Binary Enhanced Ensemble

1. Fed 75bps Rate Hike Jun 15,  VIX: 31.2, Credit spreads: +45bps, No No No Yes (-1 day) Yes (-4 Yes (-5 days)

Shock 2022 S&P 500: -5.8% (5d) days)

2. UK Gilt Crisis Sep 26, VIX: 32.7, 30Y gilt yield spike: Yes (0 days) No No Yes (0 days) Yes (-3 Yes (-4 days)
2022 +130bps, GBP crash days)

3. FTX Collapse / Crypto Nov 11, VIX: 25.9, BTC: -22%, Credit Yes (+2 Yes (+1 day, No Yes (-1 day) Yes (-5 Yes (-6 days)

Contagion 2022 market spillover concerns days, lag) lag) days)

4. Silicon Valley Bank Mar 10, VIX: 27.8->31.4, KRE ETF: -26%, Yes (-1 day) No No Yes (-1 day) Yes (-6 Yes (-7 days)

Failure 2023 Credit spreads: +72bps days)

5. Credit Suisse Rescue / Mar 19,  VIX: 23.6, CDS spreads: +350bps,  Yes (0 days) Yes (0 days) No Yes (0 days) Yes (-4 Yes (-5 days)

UBS Merger 2023 European bank stress days)

6. Fitch US Downgrade & Aug 1-4, VIX: 18.2->19.7, 10Y yield spike: No No Yes (+1 Yes (0 days) Yes (-4 Yes (-5 days)

Aug Selloff 2023 +15bps, Risk-off rotation day, lag) days)

Summary Statistics

Events Detected (Total) 3/6 (50%) 2/6 (33%) 1/6 (17%) 6/6 (100%) 6/6 (100%) 6/6 (100%)

Average Lead Time (days) -0.2 +0.7 +1.3 -0.3 -4.3 -5.3

Early Warnings (Lead >2 0/6 (0%) 0/6 (0%) 0/6 (0%) 0/6 (0%) 6/6 (100%) 6/6 (100%)

days)

Concurrent/Lagging Signals 3/3(100%) 2/2(100%) 1/1(100%) 4/6 (67%) 0/6 (0%) 0/6 (0%)

False Negatives (Missed) 3/6 (50%) 4/6 (67%) 5/6 (83%) 0/6 (0%) 0/6 (0%) 0/6 (0%)
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4.3 Regime-Dependent Performance and Feature Evolution

To analyze performance stability, we disaggregate results by stress regime. Table 8 presents
performance metrics stratified by stress probability levels: low (<25%), moderate (25-50%), high (50—
75%), and severe (>75%).

Table 8 Model performance by market regime

Market Traditional VaR ML VaR Traditional Vol ML Vol Risk Management
Regime Accuracy Accuracy Forecast Forecast Implication
Low Stress 94.2% coverage 95.1% RMSE: 0.0087 RMSE: Marginal ML advantage
coverage 0.0079
Moderate 91.3% coverage 94.7% RMSE: 0.0134 RMSE: Significant ML
Stress coverage 0.0098 improvement
High Stress 87.8% coverage 93.9% RMSE: 0.0198 RMSE: Critical ML advantage
coverage 0.0121
Severe Stress 82.1% coverage 91.2% RMSE: 0.0267 RMSE: Essential ML
coverage 0.0156 requirement

Note: Coverage = percentage of actual losses within predicted VaR bounds. RMSE = volatility forecasting accuracy (annualized). ML
models show increasing relative advantage during stress periods, supporting adaptive regime weighting.

Machine learning advantages escalate systematically with stress intensity. During low-stress
conditions, the performance gap is marginal. However, in severe stress regimes, traditional coverage
degrades to 82.1% while ML models maintain 91.2%. Similarly, volatility forecasting improvement
(RMSE reduction) widens from 9.2% in low stress to 41.6% in severe stress.

Figure 2 visualizes this divergence. Panel B shows that while ML models provide minimal lead
time (1-2 days) for minor stress events, they deliver substantial advance warnings (6-8 days) for
severe episodes. Panel C translates this into economic value: severe stress periods—occurring only
5% of the time—contribute 43% of total portfolio gains, confirming the model’s value is concentrated
in tail-risk mitigation.

Panel A: Classification Accuracy by Regime Panel B: Early Warning Lead Time Panel C: Portfolio Outperformance Value
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Fig. 2 Model performance across market regimes

Table 9 documents the temporal evolution of feature importance, testing the mechanism behind
these gains.

Table 9 Feature importance temporal evolution and regime-dependent transmission mechanisms
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Panel A: Aggregate Feature Categories

Feature Category  2015- 2020- 2022- 2024 Mean Std.Dev. CV (%) Stability Score
2019 2021 2023
Volatility 324 38.7 29.8 31.2 33.0 3.42 10.4 High
Measures
Credit Indicators 23.8 314 26.7 24.9 26.7 3.02 11.3 High
Macroeconomic 18.6 12.3 24.8 22.7 19.6 5.13 26.2 Medium
Variables
Technical 15.9 11.2 12.4 13.8 13.3 1.89 14.2 High
Indicators
Market Structure 9.3 6.4 6.3 7.4 7.4 1.38 18.6 High
Panel B: Most Stable Features (CV < 20%)
Feature 2015- 2020- 2022- 2024 Mean Std.Dev. CV (%) Stability Score
2019 2021 2023
20-day Rolling 18.3 19.1 18.7 18.0 18.5 0.42 2.3 Dominant
Volatility
5-day Rolling 13.2 14.7 13.9 13.8 139 0.60 4.3 Persistent
Volatility
Lagged Bankruptcy 15.2 16.3 14.8 15.1 15.4 0.61 4.0 Stable
Rate
RSI Momentum 124 131 11.8 125 125 0.53 4.2 Consistent
Indicator
Volume Volatility 4.7 5.2 4.8 4.5 4.8 0.29 6.0 Reliable
Ratio
Panel C: Most Variable Features (CV > 40%) - Supporting H2
Feature Expansion Recession  Tightening Easing Mean Range CV (%)
Unemployment Rate 28.1 42.3 35.7 30.2 34.1 14.2 41.6
Interest Rate Changes 354 18.2 41.6 15.8 27.8 25.8 52.1
Credit-Liquidity 8.7 22.4 18.3 11.2 15.2 13.7 45.3
Interaction
GDP Growth Rate 7.8 21.7 12.4 9.3 12.8 13.9 54.2
Cross-Correlation Shifts 3.4 12.7 8.9 4.1 7.3 9.3 63.8
Panel D: Statistical Tests for Temporal Stability
Test Description Test Statistic p-value Interpretation
Friedman test (feature rankings across 4 periods) x*(3)=34.67  <0.001*** Significant variation
Kendall's coefficient of concordance W =0.672 <0.001*** Strong agreement
Unemployment weight (Expansion vs. Recession) t(721) =8.94  <0.001*** 14.2pp difference***
Interest rate weight (Tightening vs. Easing) t(721) =9.37  <0.001*** 25.8pp difference***
Spearman rank correlation (Val. vs. Test periods) p=0.923 <0.001*** High consistency
Panel E: Post-Hoc Pairwise Comparisons (Bonferroni-corrected)
Period Comparison Z-statistic Unadjusted Adjusted p Significant
p
2015-2019 vs. 2020-2021 (COVID) 3.87 0.0001 0.0006 Yes***
2020-2021 vs. 2022-2023 (Tightening) 4.23 <0.0001 <0.0001 Yes***
2022-2023 vs. 2024 (Stabilization) 1.94 0.052 0.312 No
2015-2019 vs. 2022-2023 2.76 0.006 0.036 Yes*
2015-2019 vs. 2024 2.41 0.016 0.096 Marginal
2020-2021 vs. 2024 3.52 0.0004 0.0024 Yes**

Notes: SHAP-based importance across four periods testing Hypothesis 2. CV <20% = high stability, >40% = strong regime-dependence.
Panel C shows unemployment weight: 28.1% (expansion) to 42.3% (recession), 14.2pp difference (t=8.94, p<0.001). Panel E: Bonferroni-
corrected pairwise comparisons (q=0.0083). *** p<0.001, ** p<0.01, * p<0.05

Panel A shows that while volatility and credit indicators remain consistently important (CV = 10%),

macroeconomic variables exhibit significant regime dependence (CV=26.2%). Panel C identifies
specific drivers of this variation: unemployment rate importance rises by 14.2 percentage points
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during recessions, and interest rate sensitivity increases by 25.8 percentage points during tightening
cycles. Friedman’s test (x>=34.67, p<0.001S) confirms these rankings change systematically across
periods, validating the necessity of dynamic weighting.

Figure 3 presents aggregate SHAP values. Short-term volatility measures (20-day and 5-day)
dominate predictive power (¥18% and 14%), followed by lagged bankruptcy rates (15%). However,
no single feature exceeds 19% importance, highlighting the composite nature of financial stress.

20-day Rolling Volatility
Lagged Bankruptey Rate (5d)
5-day Rolling Volatility

RSI Momentum Indicator
Unemployment Rate (lag 1)

Credit-Liquidity Interaction

Features (Ranked by Importance)

Bollinger Band Position

Tnterest Rate Changes

Volume Volatility Ratio

z

Cross-Correlation Shi

Q
ES

2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Feature Importance (% of Total Predictive Power)

Fig. 3 SHAP feature importance for ML stress classification
4.4 Risk Forecasting Performance

Beyond binary classification, we evaluate continuous risk forecasting capabilities. Figure 4 plots
the ML stress probability series (2015-2024), showing distinct spikes preceding major crises (e.g.,
March 2020 COVID crash, March 2023 banking failure) while maintaining low baselines during stable
periods.
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Fig. 4 ML-enhanced stress indicator time series
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Table 10 presents detailed VaR prediction performance comparisons between traditional
historical simulation and the machine learning-enhanced Random Forest approach. At the 95%
confidence level, the Random Forest model achieves unconditional coverage with a p-value of 0.156,
demonstrating superior statistical adequacy. The mean absolute error decreases from 0.389% to
0.312%, representing an 18.9% improvement in capital efficiency. At the 99% confidence level, similar
patterns emerge, with the Random Forest model achieving a p-value of 0.089 for unconditional
coverage compared to 0.028 for historical simulation. These results confirm that the ML-enhanced
approach not only satisfies regulatory coverage requirements but also delivers substantial economic
value through reduced capital requirements while maintaining risk management integrity.

Table 10 VaR prediction performance: traditional vs. machine learning

Method Confidence Unconditional Conditional MAE RMSE Quantile Economic
Level Coverage (p- Coverage (p- (%) (%) Loss Significance
value) value)
Historical 95% 0.032%* 0.018* 0.389 0.542 0.195 Baseline
Simulation
Random 95% 0.156 0.234 0.312 0.445 0.158 +18.9%
Forest improvement
Historical 99% 0.028* 0.041* 0.478 0.687 0.239 Baseline
Simulation
Random 99% 0.089 0.167 0.398 0.567 0.198 +17.2%
Forest improvement

Note: Asterisks indicate rejection of null hypothesis at 5% significance level. Higher p-values indicate better coverage performance. MAE
and RMSE are measured as percentage of portfolio value. Economic significance measured as reduction in capital requirements while
maintaining coverage.

Table 11 documents the comparative volatility forecasting accuracy between traditional GARCH
(1,2) models and the LSTM neural network across different market regimes and forecast horizons.
During low-stress periods, the LSTM achieves a 1-day RMSE of 0.0079 compared to 0.0087 for GARCH,
with directional accuracy improving from 58.3% to 64.7%. The performance differential amplifies
substantially during high-stress regimes, where LSTM reduces 1-day RMSE from 0.0156 to 0.0121 and
improves directional accuracy from 52.1% to 68.9%. The Diebold-Mariano test statistics confirm
statistically significant superiority across all horizons. These findings demonstrate that the LSTM
architecture captures nonlinear volatility dynamics that traditional econometric models cannot
detect, with the relative advantage increasing precisely when accurate forecasting is most critical for
risk management.

Table 11 Volatility forecasting accuracy: GARCH vs. LSTM

Model Market 1-Day 5-Day 20-Day Diebold-Mariano Directional
Regime RMSE RMSE RMSE Test Accuracy
GARCH Low Stress 0.0087 0.0124 0.0198 Baseline 58.3%
(1,1)
LST™ Low Stress 0.0079 0.0108 0.0167 2.34%* 64.7%
GARCH High Stress 0.0156 0.0289 0.0445 Baseline 52.1%
(1,1)
LST™M High Stress 0.0121 0.0203 0.0298 3.78%x* 68.9%
GARCH Overall 0.0112 0.0189 0.0298 Baseline 56.2%
(L)
LSTM Overall 0.0094 0.0147 0.0214 4.12%%** 66.1%

Note: RMSE measured as annualized volatility units. Diebold-Mariano test statistics for forecast accuracy comparison (* p<0.05, ***
p<0.01). Directional accuracy represents percentage of correct volatility direction predictions.
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4.5 Generalization and Robustness Assessment

Extensive out-of-sample validation is conducted in order to avoid overfitting. As illustrated in
Table 12, comprehensive generalization diagnostics are presented for all model components. Panel
A documents XGBoost stress classification performance, showing accuracy declining marginally from
81.3% (training) to 78.9% (hold-out test), with a degradation factor of 1.03 indicating no overfitting.
Panel B reports on the performance of Random Forest Value at Risk (VaR), with coverage accuracy
maintaining stability at 95.1% in the hold-out period and economic value gains of 18.9%. As
demonstrated in Panel C, the LSTM volatility forecasting model exhibits stability, with an overall Root
Mean Square Error (RMSE) that increases marginally from 0.0084 to 0.0094 across periods. Panel D
provides critical generalization diagnostics. The training-test accuracy gap of 2.4 percentage points
falls well below the 5 pp threshold, which is typically indicative of overfitting. However, the cross-
period prediction correlations (r = 0.847, p < 0.001) and feature importance rank correlations (p =
0.923, p < 0.001) confirm consistent model behavior. The average degradation factor of 1.02 across
all models demonstrates excellent generalization to unseen market conditions.

Table 12 Model performance across training, validation, and hold-out test periods generalization and
overfitting assessment

Model & Metric Training (Jan Validation (Jan  Hold-out Test (Jul Degradation Overfitting
2015-Dec 2020-Jun 2022) 2022-Dec 2024) Factor Assessment
2019)
Panel A: XGBoost Stress Classification
Accuracy (%) 81.3 77.8 78.9 1.03 No overfitting
AUC-ROC 0.867 0.824 0.841 1.03 Excellent
F1-Score 0.792 0.753 0.745 1.06 Acceptable
False Positive Rate 11.2 13.8 14.2 0.79 Stable
(%)
Panel B: Random Forest VaR (95% confidence)
Coverage Accuracy 96.8 94.9 95.1 1.02 No overfitting
(%)
Mean Absolute 0.287 0.301 0.312 0.92 Acceptable
Error (%)
RMSE (%) 0.398 0.429 0.445 0.89 Good
Economic Value (% 21.4 19.7 18.9 1.13 Stable
gain)
Panel C: LSTM Volatility Forecasting
Overall RMSE 0.0084 0.0089 0.0094 0.89 Excellent
Low Stress RMSE 0.0071 0.0076 0.0079 0.90 Excellent
High Stress RMSE 0.0109 0.0116 0.0121 0.90 Excellent
Directional 68.7 65.3 66.1 1.04 Good

Accuracy (%)
Panel D: Generalization Diagnostics

Training-Test Gap - - 2.4 pp - No overfitting
(XGBoost accuracy) (<5pp threshold)
Validation-Test Gap - - -1.1pp - Improved
(XGBoost accuracy) generalization

Cross-period - - r=0.847%** - Strong consistency
prediction
correlation
Feature importance - - p=0.923*** - Stable patterns

rank correlation
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Average - - 1.02 - Excellent
degradation across generalization
all models

Notes: Training (Jan 2015-Dec 2019, N=1,304): initial estimation via 5-fold time-series CV. Validation (Jan 2020-Jun 2022, N=652):
model selection, encompassing COVID-19 episode. Hold-out test (Jul 2022-Dec 2024, N=723): completely unseen data for final
evaluation, including six major events.. Degradation Factor: training/test ratio for accuracy metrics, test/training for error metrics
(values near 1.0 indicate stable generalization). Panel D: Training-Test Gap <5pp threshold indicates no overfitting, Validation-Test
Gap -1.1pp suggests improved generalization rather than overfitting. Regularization: XGBoost (max_depth=>5, min_child weight=3,
gamma=0.1), Random Forest (max_features='sqrt’, min_samples leaf=5), LSTM (dropout=0.2, early stopping patience=10). ***
p<0.001

Table 13 documents robustness testing results across distinct crisis episodes within the validation
and hold-out periods. During the 2020-2021 COVID period characterized by high volatility, the ML
framework achieves 89.1% accuracy compared to 78.3% for traditional approaches, with a
degradation factor of 1.12x. The 2022 rate hike period, representing a regime change environment,
yields 91.4% ML accuracy versus 82.7% traditional accuracy, with minimal degradation (1.08x). The
2023 banking crisis, characterized by credit stress contagion, demonstrates the largest performance
differential, with ML achieving 87.6% accuracy compared to 71.2% for traditional methods. Overall
out-of-sample performance shows 89.7% ML accuracy versus 79.1% traditional accuracy, with a
stable degradation factor of 1.09x. These results confirm that the adaptive framework maintains
robust performance across heterogeneous crisis types, with lower degradation indicating superior
generalization compared to static approaches.

Table 13 Robustness testing results

Validation Period Traditional Performance ML Performance  Stability Metric Degradation Factor
2020-2021 (COVID) 78.3% accuracy 89.1% accuracy High volatility 1.12x
2022 (Rate Hikes) 82.7% accuracy 91.4% accuracy Regime change 1.08x
2023 (Banking Crisis) 71.2% accuracy 87.6% accuracy Credit stress 1.15x
Overall Out-of-Sample 79.1% accuracy 89.7% accuracy Stable 1.09x

Note: Accuracy measured as composite score across VaR, volatility, and stress predictions. Degradation factor represents performance
decline from in-sample to out-of-sample testing. Lower degradation indicates better generalization

5. Discussion
5.1 Key Findings and Theoretical Validation

The present study addresses three critical deficiencies in financial stress measurement. Firstly,
the structural inadequacy of static linear aggregation is identified. Secondly, the absence of adaptive
recalibration mechanisms is highlighted. Thirdly, the lack of actionable early warning capabilities is
emphasized. The findings of the present study provide robust empirical validation for two core
theoretical propositions that challenge conventional approaches to systemic risk monitoring.

Firstly, it is necessary to confirm that financial stress transmission operates through non-linear
threshold effects rather than the linear aggregation assumed by traditional indicators. The
substantial predictive capacity of interaction terms in our model directly corroborates theoretical
predictions concerning financial accelerator mechanisms [10] and phase transitions in network
contagion [3]. In contrast to the constant factor loadings assumed by traditional indices such as the
NFCI, our findings indicate that risk amplification is regime-dependent. The failure of linear models
during periods of stress, in contrast to their efficacy during normal conditions, supports the
hypothesis that contagion mechanisms are contingent on counterparty leverage thresholds that vary
across regimes [17]. This finding calls into question regulatory frameworks that assume linear scaling
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of risk factors, aligning with recent complex systems research [29], which posits that stability is
governed by non-linear interactions undetectable by static PCA.

Secondly, the temporal stability analysis confirms that stress thresholds evolve in response to
macroeconomic regime transitions. The observed shifts in feature importance—where real economy
variables dominate during recessions and monetary variables during tightening cycles prove the first
comprehensive empirical quantification of Hamilton's [31] regime-switching framework using
interpretable machine learning. These transitions are not arbitrary artifacts but rather follow
predictable patterns that can be detected. By operationalizing recent methodological advances in
detecting multiple level shifts in time series [16], it is demonstrated that adaptive models can
successfully capture the time-varying tail dependence [48] that static indicators miss. This finding
serves to underscore the dynamic nature of financial stress, highlighting the necessity of monitoring
tools that evolve in tandem with market fluctuations.

5.2 Practical Implications for Financial Institutions

The transition from binary crisis flags to continuous probability assessments enables graduated
risk management protocols that were previously impractical with static threshold approaches.
Financial institutions have the capacity to operationalize this indicator through the implementation
of tiered response frameworks, thereby transcending the binary decision-making processes that
often result in so-called "cliff effects." For instance, low-probability signals can initiate routine
monitoring, intermediate probabilities can prompt enhanced liquidity surveillance, and high-
probability signals can result in tactical defensive positioning. This approach directly addresses the
limitations identified by Moffo (2024), providing the granular risk signals necessary for optimizing
capital buffers without aggressive deleveraging.

The documented early warning capability enables institutions to execute defensive strategies
prior to market stress peaks, a period when transaction costs remain manageable and counterparty
willingness to absorb risk transfers persists. By identifying vulnerabilities days before the
manifestation of volatility, the model provides a critical opportunity to reduce exposure to specific
sectors (e.g., regional banking) identified by the SHAP analysis. In addition, the rigorous backtesting
of our risk forecasts, aligned with multi-objective elicitability criteria [26], suggests tangible benefits
for regulatory capital efficiency. The ML-enhanced Value-at-Risk (VaR) model has been demonstrated
to satisfy conditional coverage tests in instances where historical simulation has been unsuccessful,
thus offering a potential pathway for reducing Basel regime penalty multipliers. This finding indicates
that systemically important institutions can expect to see significant opportunities for capital
redeployment, thereby demonstrating the capacity for algorithmic innovation to simultaneously
enhance safety and economic efficiency.

5.3 Regulatory and Policy Implications

The marked discrepancy in performance between our adaptive framework and established
Federal Reserve indices underscores the pressing necessity for regulatory infrastructure
modernization. Central banks reliant upon static PCA-based indices encounter systematic blind spots
during regime transitions, precisely when crisis risks escalate most rapidly. The lagging nature of
these indices suggests that they function effectively as "thermometers" measuring current heat but
fail as "barometers" predicting incoming storms.

In accordance with the necessity for contemporary oversight, regulatory authorities should give
consideration to a dual-track monitoring framework. This approach involves the maintenance of
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existing indices (NFCI, STLFSI) to ensure historical continuity and transparency, whilst concurrently
deploying ML-enhanced indicators for real-time surveillance. This redundancy is underpinned by a
complementary strengths approach, whereby static methods provide stability, while adaptive
methods deliver the sensitivity required for early detection [34].

Moreover, the findings of this study lend support to the incorporation of regime-dependent
scenarios into regulatory stress testing (e.g., CCAR). Current stress tests frequently employ
predefined macroeconomic pathways, irrespective of the prevailing economic regime. The
integration of machine learning (ML)-detected thresholds would empower regulators to adapt the
scenario severity in accordance with real-time vulnerabilities. To illustrate this, one could consider
the intensification of interest rate shock scenarios when the model detects heightened sensitivity to
monetary policy. Furthermore, the activation of the countercyclical capital buffer (CCyB) in relation
to continuous stress probabilities has the potential to address the procyclicality issues inherent in
credit-to-GDP gap measures, thereby providing more timely activation signals that align with the
actual financial cycle [21].

Lastly, this study shows that SHAP-based interpretability can meet transparency standards, which
is a common concern among regulators [45]. By quantifying precisely why a stress signal is rising (e.g.,
"due to liquidity drying up" vs. "due to credit spreads"), regulators can demand targeted remediation
plans rather than broad-spectrum capital hikes.

5.4 Comparison with Existing Literature

The present approach extends the machine learning finance literature by bridging the gap
between predictive accuracy and institutional utility. Whilst earlier research [5,11] has shown the
capacity of gradient boosting for classification, these studies have predominantly concentrated on
binary outcomes or particular transmission channels in isolation. The advancement of this literature
is achieved through the synthesis of comprehensive macro-financial indicators into a unified, regime-
adaptive framework. In contrast to siloed applications that predict only bank failures or sovereign
defaults, our composite indicator captures systemic stress across equity, credit, and funding markets
simultaneously.

Furthermore, a methodological solution to the stationarity bias prevalent in earlier studies is
provided. Whilst earlier studies frequently presupposed constant feature importance, our dynamic
weighting mechanism explicitly models the evolution of transmission channels. This finding
corroborates the predictions made by Ang and Timmermann [6] concerning time-varying
parameters, yet it does so via an interpretable, data-driven framework as opposed to complex
Bayesian estimations. By demonstrating the capacity of machine learning (ML) models to generalize
across a range of heterogeneous crisis types, including pandemic-induced volatility and inflation
shocks, the study refutes the assertion that such models are inherently constrained to specific
historical samples [32].

5.5 Limitations and Caveats

The present study is an empirical analysis that focuses exclusively on US equity markets over
2015-2024. This limits direct generalizability to international markets, fixed income, or foreign
exchange stress episodes, as emphasized in cross-market validation literature. While the theoretical
underpinnings concerning non-linear thresholds and regime-dependent transmission should be
applicable to other asset classes and jurisdictions, empirical validation remains necessary. Emerging
markets, characterized by thinner liquidity and divergent institutional frameworks, may manifest
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distinct transmission dynamics, necessitating adapted feature engineering, as evidenced in Bekaert
and Harvey's [9] research on market integration and volatility in developing economies. The 2015
start date is not inclusive of major historical crises that could offer additional validation, though
extending analysis faces data availability constraints for high-frequency volatility measures before
2000.

Even though SHAP-based explainability addresses concerns regarding black-box models, the
hybrid ensemble combining XGBoost, Random Forest, and LSTM involves computational complexity
that exceeds that of simple linear regressions, which are favored by some regulatory authorities for
transparency reasons. The adaptive weighting mechanism introduces path-dependent predictions,
whereby identical input features may yield different stress probabilities depending on recent history.
This complicates regulatory validation in comparison to static models. These concerns are consistent
with the findings of Gu et al., [36] on the risks of overfitting in machine learning asset pricing
applications and the critique of multiple testing by Harvey et al., [32]. However, our walk-forward
validation and degradation analysis suggest robust out-of-sample generalization.

Walk-forward validation has been shown to confirm robust generalization across heterogeneous
crises. However, it has been demonstrated that unprecedented structural breaks—such as regime
shifts from central bank digital currencies, quantum computing threats, or climate-induced
simultaneous failures—may exceed the coverage of the training distribution. The documented
temporal decay assumes gradual evolution; however, abrupt structural breaks could trigger more
severe degradation, requiring immediate recalibration. It is incumbent upon institutions to maintain
parallel monitoring systems that can detect anomalous prediction patterns. Such systems should be
designed to trigger a manual review and, where appropriate, initiate emergency retraining.

To ensure successful implementation, it is essential to establish a comprehensive data
infrastructure. This should include real-time market data feeds, macroeconomic indicators with
minimal publication lag, and computational resources for daily model inference. It is evident that
smaller institutions lacking dedicated quantitative teams may encounter adoption barriers despite
the documented benefits. This suggests a potential role for centralized regulatory provision, similar
to the Federal Reserve's existing NFCI dissemination. The process of feature engineering necessitates
a degree of specialized knowledge to adapt to the particularities of each institution, thus precluding
the possibility of a "plug-and-play" implementation. Instead, it demands continuous collaboration
between the quantitative teams and the practitioners of risk management.

4. Conclusions

This study proposes a novel approach to measuring financial stress by integrating machine
learning with dynamic threshold theory. This integration is purported to overcome the structural
limitations of static indicators. The present study establishes that financial stress transmission is
inherently non-linear and regime-dependent, characteristics that render traditional linear
aggregation methods insufficient for real-time early warning. The development of a framework that
adapts its weighting mechanism to evolving market conditions has been demonstrated to provide a
robust solution that delivers superior classification accuracy, actionable early warnings, and tangible
economic value in comparison to established benchmarks. The findings suggest that the future of
systemic risk monitoring lies not in static indices, but in adaptive, interpretable systems capable of
capturing the fluid nature of modern financial contagion. This transition offers regulators and
institutions a dual pathway to enhanced stability, namely the better detection of emerging threats
and the more efficient allocation of capital through graduated, data-driven risk management.
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