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The present study proposes a machine learning-enhanced forecasting 
framework for financial stress that addresses critical limitations in static 
threshold approaches used by regulatory authorities. Utilizing a 
comprehensive dataset comprising daily S&P 500 information spanning 
multiple crisis episodes, we employ gradient boosting algorithms with 
dynamic threshold detection to predict market stress occurrences. The hybrid 
ensemble model utilized in this study has been shown to significantly surpass 
conventional econometric methods in terms of forecasting accuracy and the 
timeliness of early warning systems. The framework demonstrated a high 
degree of efficacy in predicting major crisis events during the hold-out period, 
exhibiting a substantial improvement in detection rates when compared to 
Federal Reserve indices. The application of feature importance analysis has 
yielded findings that demonstrate the presence of regime-dependent 
patterns. These findings indicate that there is a notable increase in sensitivity 
to real-economy variables, such as unemployment, during periods of 
recession. For practitioners, the continuous stress probability forecasts 
enable graduated risk management protocols and generate tangible portfolio 
gains. Researchers are particularly interested in the establishment of novel 
benchmarks for financial stress forecasting and in how machine learning can 
capture non-linear transmission mechanisms that conventional approaches 
cannot detect. 
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1. Introduction 
 

The measurement of financial market stress and the provision of early warning systems remain 
critical challenges for economic analysis, primarily due to the structural inability of conventional 
methodologies to adapt to rapidly evolving systemic risks. Recent crises have demonstrated that 
static indicators often fail to capture the speed of contagion. For example, the S&P 500 index 
plummeted by over 30% during the panic surrounding the global pandemic of 2020, while in March 
2023 the collapse of Silicon Valley Bank and Credit Suisse triggered a contagion across regional 
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banking sectors that conventional models largely missed until the onset of volatility [2]. The global 
financial crisis, precipitated by the emergence of SARS-CoV-2, has exposed significant deficiencies in 
established risk assessment methodologies. This is evidenced by the substantial decline in bank 
stocks despite the regulatory improvements implemented in the aftermath of the 2008 crisis [1]. 
While the repercussions of such episodes are known to engender disruptions in credit flows and 
precipitate the destabilization of asset valuations, the persistence of these failures highlights a 
fundamental gap in the capacity of monitoring tools to deliver timely warnings about systemic 
vulnerabilities before they materialize. 

A central paradox in the extant literature pertains to the persistent reliance on composite stress 
indicators, including the Federal Reserve's National Financial Conditions Index (NFCI), the St. Louis 
Fed Financial Stress Index (STLFSI), and the Kansas City Fed Financial Stress Index (KCFSI), which 
employ static aggregation methodologies despite the manifest limitations of such methods in real-
time applications [30,33,39]. Most of indicators are predicated on equal weighting, principal 
component analysis (PCA), or fixed correlation-based approaches, which implicitly assume constant 
relationships among economic variables across all market conditions. This assumption is 
fundamentally at odds with a substantial corpus of theoretical and empirical evidence detailing 
regime-dependent transmission mechanisms in financial markets [10,15,31]. Recent research in the 
field of complex systems has served to reinforce this contradiction, with the findings demonstrating 
that financial stability is governed by nonlinear interactions that static models are incapable of 
capturing [29] and that contagion mechanisms depend heavily on counterparty leverage thresholds 
that vary significantly across regimes [17]. 

Machine learning provides adaptive frameworks that encapsulate nonlinear interactions and 
temporal dependencies within high-dimensional financial data, thereby overcoming the static 
constraints of conventional methodologies. Recent applications demonstrate superior performance 
in comparison to conventional econometric approaches in predicting banking crises [11,34], 
sovereign defaults [4], and tail risk events [5]. Nevertheless, three significant gaps have been 
identified that constrain the present applications of machine learning in the domain of financial stress 
measurement. Firstly, extant studies predominantly focus on binary crisis classification rather than 
continuous stress probability assessment, thus limiting institutional utility for graduated risk 
management responses [41]. Secondly, most applications examine specific transmission channels in 
isolation, such as network connectedness or credit risk, rather than synthesizing comprehensive 
macro-financial indicators into unified monitoring frameworks suitable for regulatory oversight [47]. 
Thirdly, there is a paucity of research addressing the dynamic evolution of stress transmission 
thresholds across macroeconomic regimes. This is despite theoretical predictions that crisis 
amplification mechanisms activate at regime-dependent critical levels [3,44] and recent empirical 
calls for early-warning frameworks that can capture these systematic risk signals through explainable 
methodologies [20,45]. 

To address the methodological limitations identified, this study proposes a machine learning-
enhanced composite financial stress indicator. This indicator integrates high-dimensional 
macroeconomic data with adaptive threshold detection. The proposed hybrid ensemble architecture 
combines XGBoost gradient boosting for stress classification, Random Forest for Value-at-Risk (VaR) 
prediction, and LSTM networks for volatility forecasting. In accordance with recent advances in high-
dimensional vector autoregression with influencers [35], the present framework synthesizes 24 
macro-financial variables—encompassing volatility, credit conditions, and sentiment—into a unified 
dynamic system. It is crucial to note that SHAP (SHapley Additive exPlanations) analysis is employed 
not merely for post-hoc interpretation but to operationalize a dynamic weighting mechanism where 
feature contributions evolve in response to detected market regimes. 
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The present research is guided by three primary inquiries. Firstly, the investigation will ascertain 
whether financial stress transmission exhibits nonlinear threshold effects that necessitate adaptive 
modelling approaches beyond linear aggregation. Secondly, the study examines whether critical 
stress thresholds are static or evolve dynamically in accordance with changing market structures. This 
question is motivated by recent findings on detecting multiple level shifts in bounded time series 
[16]. Thirdly, an evaluation will be conducted to ascertain whether a dynamic, machine learning-
enhanced indicator provides statistically significant improvements in early warning capability and 
economic value when compared to static binary benchmarks currently utilized in regulatory practice. 

The present study makes three principal contributions to the financial stability literature. Firstly, 
rigorous empirical validation is provided that stress transmission operates through regime-
dependent non-linear channels. By modelling time-varying tail dependence [48], it is demonstrated 
that interaction effects between variables (e.g., credit spreads and unemployment) amplify 
significantly during crises, a phenomenon invisible to linear models. Secondly, the dynamic evolution 
of transmission thresholds is quantified. In contradistinction to static PCA weights, the adaptive 
framework elucidates systematic shifts in feature importance across business cycles, thereby 
confirming that the drivers of financial stress are structurally different during monetary tightening 
compared to liquidity crises. Thirdly, a robust benchmarking framework is established against Federal 
Reserve indices. To ensure the statistical validity of our findings, we employ multi-objective 
backtesting protocols [26], thereby confirming that the superior early warning signals generated by 
our model are robust to overfitting and translate into tangible economic gains for institutional risk 
management. 

The practical implications of this research extend to both portfolio management and 
macroprudential oversight. The transition from binary "crisis/no-crisis" flags to continuous 
probability assessments enables a graduated risk management protocol, ranging from routine 
monitoring to emergency defensive positioning. This protocol reduces the cost of false alarms. For 
policymakers, the lag in static indices demonstrated during recent regime transitions underscores 
the necessity of "dual track" monitoring systems that complement traditional linear indicators with 
adaptive machine learning tools. 
 
2. Literature Review and Hypothesis Development 
 
2.1 Evolution of Composite Stress Indicators and Their Limitations 
 

The development of composite financial stress indicators was driven by the recognition that 
systemic risk necessitates the aggregation of diverse market signals, rather than the utilization of 
isolated metrics. This approach was pioneered by Illing and Liu [37], who emphasized the 
computational challenge of synthesizing high-frequency data [12]. However, the subsequent 
evolution of these tools—exemplified by the Federal Reserve's National Financial Conditions Index 
(NFCI) and the ECB's Composite Indicator of Systemic Stress (CISS)—has largely relied on static 
aggregation methodologies such as PCA or fixed correlation weighting [33,39]. 

A critical deficiency in established frameworks is the assumption of invariant relationships across 
economic cycles [6]. Equal weighting schemes have been shown to be ineffective in capturing the 
dominance of specific channels during crisis transitions, resulting in an underestimation of stress [15]. 
In a similar manner, PCA-based approaches extract common factors based on historical averages, 
rendering them insensitive to the phase transitions characteristic of systemic contagion. Recent 
evidence from the Spanish interbank market demonstrates that contagion mechanisms are 
inherently nonlinear and dependent on counterparty leverage thresholds that shift dramatically 
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under stress [17]. This limitation was exposed during the 2020 equity-economic disconnect, where 
static loadings failed to capture the disconnect [2]. 

In addition, the limits of arbitrage framework posits that information efficiency is subject to 
variation across market states [44], thereby underscoring the necessity for indicators capable of 
adaptively recalibrating weights. Whilst recent studies in the field of complex systems have 
emphasized the significance of nonlinear interactions [29], conventional regulatory instruments 
continue to be constrained by linear assumptions. These flaws underscore a broader empirical gap: 
static models exhibit poor out-of-sample performance in volatile regimes, frequently generating 
excessive false alarms due to their inability to handle non-stationary network dynamics [22,42]. 

 
2.2 Machine Learning Applications in Financial Stress Assessment 
 

Machine learning (ML) has transformed the field of financial stress assessment by offering 
frameworks capable of modelling high-dimensional non-linearities. In comparison to autoregressive 
baselines, tree-based models have been demonstrated to exhibit superior efficacy in predicting 
financial market stress distributions [4,5]. Beutel et al., [11] and Hu et al., [34] further validate the 
superiority of these ensemble methods over logistic regression in predicting banking crises, noting 
that machine learning (ML) captures interaction effects that linear models miss [11,34]. 

Nevertheless, the implementation of machine learning (ML) in this field is constrained by a trade-
off between predictive accuracy and interpretability. Despite their potency, neural networks 
frequently operate as opaque systems, thereby constraining their efficacy for regulatory oversight 
[19]. Although recent studies utilizing explainable AI (XAI) techniques such as SHAP have begun to 
bridge this gap [45], a significant portion of the literature remains focused on binary classification 
rather than continuous probability assessment [41]. 

Furthermore, extant machine learning (ML) applications frequently demonstrate an insular focus. 
It is evident that studies frequently analyze specific channels in isolation. For instance, research may 
focus on network connectedness [47] or interbank contagion [20]. However, there is a paucity of 
research that considers holistic, regime-dependent composites [13]. Although ensemble methods 
have shown potential [7], there is still a need to fully realize their integration with dynamic threshold 
detection mechanisms. The present study addresses this lacuna by employing XGBoost to derive 
time-varying weights, thus addressing the need for comprehensive monitoring. 

 
2.3 Theoretical Framework and Empirical Evidence for Dynamic Composite Indicators 
 

The transition from static to dynamic composite indicators is founded upon three converging 
theoretical streams. Firstly, Regime-Switching Theory [31] posits that financial time series transition 
between states governed by different parameters. This suggests that variables such as 
unemployment may possess regime-dependent predictive capabilities, as evidenced by studies 
conducted by Jiang et al., [38] and Goldstein et al., [27]. Static weighting schemes are incompatible 
with this property, whereas adaptive ML models align with the theory by allowing weights to toggle 
based on the detected state. 

Secondly, network theory posits that systemic risk emanates from evolving interconnectedness 
[3]. Recent methodological advances in the detection of multiple level shifts [16] and the modelling 
of time-varying tail dependence [48] serve to reinforce the necessity of dynamic approaches. 
Contagion pathways emerging during periods of stress often remain dormant during normal times 
[8], requiring models capable of simulating evolving interactions. 
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Thirdly, from a behavioral finance perspective, it is recognized that risk appetite is regime 
dependent [28]. During periods of heightened stress, behavioral biases become more pronounced, 
leading to the convergence of correlations toward a unified outcome. Empirical evidence has been 
provided to demonstrate that the computational adaptability employed in modelling these non-
stationarities yields significant economic value [49], outperforming static benchmarks such as CoVaR 
in crisis detection [46]. 

 
2.4 Hypothesis Development 
 

Drawing on these theoretical foundations and empirical gaps, we formulate two hypotheses 
addressing static indicator limitations: 

Hypothesis 1: Financial stress transmission operates through non-linear threshold effects where 
amplification mechanisms activate at critical levels, rather than linear scaling assumed by traditional 
indicators. 

This hypothesis builds on Bernanke et al., [10] financial accelerator showing credit constraints 
amplify at thresholds, and Acemoglu et al.'s (2015) network theory documenting phase transitions in 
contagion. Empirical evidence from recent crises reveals discrete regime shifts undetectable by linear 
PCA but quantifiable through machine learning's recursive partitioning. We predict that interaction 
terms between credit conditions and liquidity measures will demonstrate significant additional 
predictive power beyond main effects, validated through permutation tests comparing models with 
and without interaction effects. 

Hypothesis 2: Critical stress thresholds evolve dynamically in response to macroeconomic regime 
transitions, following predictable patterns amenable to adaptive machine learning detection. 

Hamilton's [31] regime-switching framework predicts transmission mechanisms vary across 
expansion and recession states. We hypothesize that unemployment sensitivity increases during 
recessions while interest rate sensitivity rises during monetary tightening, reflecting regime-
dependent amplification channels. Machine learning's adaptive retraining should capture these 
predictable patterns better than static methods, validated through rolling-window analysis 
documenting systematic feature importance shifts across identified regime periods. 

 
3. Methodology 
 

This section delineates the data sources, preprocessing steps, and analytical procedures utilized 
to construct and validate the dynamic composite stress indicator. By integrating traditional 
econometric techniques with advanced machine learning algorithms, the methodology overcomes 
the constraints of static aggregation methods, enabling adaptive weighting and robust performance 
evaluation across varied market regimes. The approach emphasizes transparency, interpretability, 
and regulatory compliance, aligning with standards for financial risk modeling. 

 
3.1 Data Description 
 

Empirical analysis employs comprehensive daily financial and economic data spanning January 2, 
2015, to December 31, 2024 (2,609 trading days). This timeframe deliberately encompasses diverse 
regimes: the post-crisis recovery (2015–2019), the COVID-19 volatility shock (2020–2021), and the 
monetary tightening cycle (2022–2024). 

Detailed documentation of all 14 base variables, including definitions, transformations, and 
interpolation methods for lower-frequency data, is provided in Table 1. The dataset encompasses 
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five primary categories: market data (S&P 500 Index, Trading Volume, VIX Volatility Index), interest 
rates (10-Year Treasury, Federal Funds Rate, 3-Month Treasury), macroeconomic indicators (GDP 
Growth, Unemployment Rate, Core CPI Inflation), credit indicators (Corporate Bond Spreads, 
Bankruptcy Rate, Commercial Paper Rate), and sentiment measures (Consumer Confidence, 
Economic Uncertainty). Daily data are obtained directly from Bloomberg and FRED, while monthly 
and quarterly series are interpolated to daily frequency using cubic spline methods to ensure 
temporal consistency. All financial data have been adjusted for dividends and stock splits to maintain 
accuracy. Missing observations (<0.8%) are imputed via forward-fill for short gaps and linear 
interpolation for longer periods. All variables are synchronized to the S&P 500 trading calendar. 
Stationarity is ensured through logarithmic returns or first differencing, verified by Augmented 
Dickey-Fuller tests. 

 

Table 1 Complete variable documentation and sources 

Variable 
 Name 

Source Series  
ID / Ticker 

Definition Unit Frequency Transformation 

S&P 500 Index Bloomberg SPX Index Large-cap 
equity index 

Price level Daily Log returns 

Trading Volume Bloomberg SPX Index Volume Total shares 
traded 

Millions Daily None 

VIX Volatility 
Index 

CBOE VIX Index Implied 
volatility 

Percentage Daily None 

10-Year 
Treasury 

FRED GS10 Government 
bond yield 

Percentage Daily First difference 

Federal Funds 
Rate 

FRED FEDFUNDS Policy interest 
rate 

Percentage Daily First difference 

3-Month 
Treasury 

FRED GS3M Short-term rate Percentage Daily First difference 

GDP Growth FRED GDPC1 Real GDP 
quarterly 
growth 

Percentage Quarterly Interpolation to 
daily 

Unemployment 
Rate 

BLS UNRATE Civilian 
unemployment 

Percentage Monthly Interpolation to 
daily 

Core CPI 
Inflation 

FRED CPILFESL Core consumer 
prices YoY 

Percentage Monthly Interpolation to 
daily 

Corporate Bond 
Spreads 

FRED BAMLC0A4CBBB BBB-Treasury 
spread 

Basis 
points 

Daily None 

Bankruptcy 
Rate 

ABI Custom Business 
bankruptcy 

filings 

Percentage Monthly Interpolation to 
daily 

Commercial 
Paper Rate 

FRED RIFSPPNAAD90NB 90-day 
commercial 

paper 

Percentage Daily First difference 

Consumer 
Confidence 

Conference Board UMCSENT Consumer 
sentiment 

index 

Index level Monthly Interpolation to 
daily 

Economic 
Uncertainty 

PolicyUncertainty.com EPU Economic 
policy 

uncertainty 

Index level Daily None 

Note: FRED = Federal Reserve Economic Data, BLS = Bureau of Labor Statistics, ABI = American Bankruptcy Institute, CBOE = Chicago 
Board Options Exchange. Interpolation procedures use cubic spline methods for monthly and quarterly data conversion to daily 
frequency. All financial data adjusted for dividends and stock splits. 

 
To validate the machine learning-enhanced indicator against established alternatives, a 

systematic comparison of performance was conducted with three widely used stress indices 
maintained by the Federal Reserve System: the National Financial Conditions Index (NFCI, FRED series 
NFCI) [14], the St. Louis Fed Financial Stress Index (STLFSI, FRED series STLFSI4) [39], and the Kansas 
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City Fed Financial Stress Index (KCFSI) [30]. These indices, which employ PCA on broad variable sets, 
serve as the regulatory standard. In order to ensure comparability, all indices are converted to daily 
frequency and mapped to binary stress classifications. 
 
3.2 Construction of the Composite Stress Indicator 

 
The primary innovation presented in this study is a machine learning-enhanced indicator that 

dynamically weights components based on regime-adaptive correlations. The model employs the 
XGBoost gradient boosting framework, with the objective of minimizing the standard regularized 
logistic objective function [18]. The execution of K = 1,000 boosting rounds with a learning rate of η 
= 0.1 is conducted on rolling 500-day windows. 

Feature engineering constructs p = 47 variables, including lagged interactions (e.g., 
unemployment x credit spreads), GARCH (1,1) volatility residuals, and equity-bond cross-correlations. 
Unlike static models [46], we implement dynamic feature importance weighting using time-varying 
SHAP values [40]: 
 

𝑤𝑗,𝑡 =
∣𝜙̄𝑗,𝑡∣

∑ ∣
𝑝
𝑗=1

𝜙̄𝑗,𝑡∣
                             (1) 

 

where 𝜙̄𝑗,𝑡 represents the mean absolute SHAP value for feature $j$ over the rolling estimation 

window [t − 500, t]. This approach enables adaptive recalibration; for instance, unemployment 
sensitivity empirically rises from 28% during expansions to 42% during recessions. 

The final indicator produces a continuous probability P(𝑆𝑡𝑟𝑒𝑠𝑠𝑡 | 𝑋𝑡) ∈ [0,1] via a logistic 
transformation. This continuous scale facilitates graduated risk protocols: P < 0.25 (monitoring), 0.25 
≤ P < 0.50 (surveillance), 0.50 ≤ P < 0.75 (defensive), and P ≥ 0.75 (emergency). 

The specific timeline of training, validation, and hold-out test periods is detailed in Table 2. The 
training period (January 2015 – December 2019; N=1,258 observations) encompasses the 2015-16 
commodity crisis, 2018 trade tensions, and late Fed tightening cycle, achieving 81.3% training 
accuracy with an AUC of 0.867. The validation period (January 2020 – June 2022; N=628 observations) 
includes the COVID-19 crash and stimulus-driven recovery, yielding 77.8% accuracy and an AUC of 
0.824. The hold-out test period (July 2022 – December 2024; N=723 observations) represents 
genuine out-of-sample evaluation, encompassing aggressive Fed rate hikes and the 2023 banking 
crisis, with 78.9% accuracy and an AUC of 0.841. The consistency between validation and test 
accuracy confirms robust generalization, with 91 total model updates implemented across the 
sample period through adaptive retraining. 

 
 
 

Table 2 Walk-Forward validation timeline and performance 

Period Dates N 
(obs) 

Purpose Key Stress Events Model Performance 

Training Jan 2015 
- Dec 
2019 

1,258 Initial model 
development 

2015-16 commodity crisis, 2018 
trade tensions, Late 2018 Fed 

tightening volatility 

Training accuracy: 
81.3%, AUC: 0.867, F1-

score: 0.792 
Validation Jan 2020 

- Jun 
2022 

628 Hyperparameter 
tuning 

COVID-19 crash (Mar 2020), 
Stimulus-driven recovery, Initial 

Fed tightening cycle 

Validation accuracy: 
77.8%, AUC: 0.824, F1-

score: 0.753 
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Hold-out 
Test 

Jul 2022 
- Dec 
2024 

723 Final evaluation 
(unseen) 

Aggressive Fed rate hikes, 2023 
banking crisis (Silicon Valley Bank, 

Credit Suisse), Regional bank stress 
contagion 

Test accuracy: 78.9%, 
AUC: 0.841, F1-score: 

0.745 

Note: Hold-out test represents genuine out-of-sample evaluation without parameter tuning. Consistency between validation (77.8%) 
and test (78.9%) accuracy confirms robust generalization. Retraining frequency adapts to stress levels, with 91 total model updates 
across sample period 

 
The hybrid ensemble architecture comprises three complementary machine learning 

components, each systematically optimized through rigorous cross-validation procedures. The 
XGBoost stress classification model employs 1,000 estimators with a learning rate of 0.1 and 
maximum depth of 6, incorporating L1 and L2 regularization (alpha=0.05, lambda=1.0) to prevent 
overfitting while addressing class imbalance through scale_pos_weight adjustment. 
Hyperparameters were optimized via Bayesian optimization across 150 trials using AUC-ROC as the 
objective metric, with 5-fold time-series cross-validation preserving temporal ordering. The Random 
Forest VaR prediction model utilizes 500 estimators with maximum depth of 10, minimum samples 
per leaf of 50 to ensure statistically significant splits, and recursive feature elimination for variable 
selection. Out-of-bag scoring provides unbiased performance estimation during training. The LSTM 
volatility forecasting network incorporates a 20-day input sequence capturing monthly trading 
patterns, two hierarchical LSTM layers (64 and 32 units respectively), and dropout regularization of 
0.2 to prevent co-adaptation. The model employs Huber loss for robustness to outliers, Adam 
optimizer with adaptive learning rate scheduling, and early stopping with 15-epoch patience to 
prevent overfitting. Gradient clipping (norm threshold=1.0) ensures training stability. All models were 
trained on NVIDIA Tesla V100 GPU (32GB RAM) for deep learning components and Intel Xeon 
processors (32 cores) for tree-based models, with hyperparameter optimization conducted 
exclusively on the training period to maintain strict temporal separation from validation and test 
data. 

An adaptive retraining schedule is implemented, whereby the update frequency is proportional 
to the stress probability: monthly during normal conditions (P < 0.25), biweekly during moderate 
stress, and weekly during high stress (P ≥ 0.50). This protocol has been developed to ensure rapid 
adaptation to structural breaks while maintaining computational feasibility. 

 
3.3 Portfolio Construction and Economic Value Assessment 
 

To quantify economic significance, we construct a dynamic portfolio strategy allocated between 
the S&P 500 (SPY) and 3-month U.S. Treasury bills. The allocation rule translates continuous stress 
probabilities into graduated equity positions 𝜔𝑡: 

𝜔𝑡 = {

1.00 if 𝑃𝑡 < 0.25
0.75 if 0.25 ≤ 𝑃𝑡 < 0.50
0.50 if 0.50 ≤ 𝑃𝑡 < 0.75
0.25 if 𝑃𝑡 ≥ 0.75

             (2)  

 
Rebalancing occurs only when the desired allocation change exceeds 5% to minimize friction, 

incorporating realistic transaction costs of 2 basis points per round-trip trade. The benchmark 
strategy maintains a static ωₜᴮ = 1.00. 

Performance is evaluated using standard risk-adjusted metrics, including the Sharpe ratio and 
Sortino ratio, alongside Maximum Drawdown calculations. Table 3 reports on the economic value 
decomposition over the hold-out test period. 
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Table 3 Economic value decomposition and portfolio performance 

Metric ML Strategy Benchmark Difference Economic Value 

Cumulative Return 18.7% 14.2% +4.5% +$4.5M over period 
Annualized Return 7.4% 5.6% +1.8% +$1.8M annually 

Sharpe Ratio 0.89 0.61 +45.9% Superior risk-adjusted returns 
Maximum Drawdown -12.3% -18.6% +33.9% $6.3M loss prevention 
Downside Deviation 8.4% 11.7% -28.2% Reduced downside risk 

Sortino Ratio 1.24 0.73 +69.9% Enhanced downside-adjusted returns 
Annual Turnover 147% 0% +147% Active management cost 
Transaction Costs $0.89M $0 -$0.89M Realistic friction 
Gross Annual Gain - - +$4.6M Before costs 
Net Annual Gain - - +$3.7M After all costs 

Notes: Hold-out test period (July 2022-Dec 2024, 2.5 years). Transaction costs: 2 basis points per round-trip. Risk-free rate: FRED series 
DTB3. Sharpe/Sortino ratios calculated using daily returns, annualized. Maximum drawdown = largest peak-to-trough decline. 

 
As shown in Table 3, high-stress periods—despite occurring only 19% of the time—contribute 

43% of total gains ($1.6M), validating the model’s crisis mitigation capability. The ML strategy 
generates a Net Annual Gain of $3.7M, significantly outperforming the passive benchmark. 
 
4. Results 
 
4.1 Core Performance Metrics and Hypothesis Validation 
 

The classification performance, statistical significance, and economic value of three competing 
approaches are evaluated: traditional binary threshold aggregation, machine learning-enhanced 
dynamic weighting, and the hybrid ensemble methodology. All methods are assessed on an identical 
hold-out test period, without ex-post optimization. 

Table 4 provides a synopsis of the classification accuracy metrics. The traditional binary threshold 
approach attains an accuracy of 67.3%, whereas the machine learning (ML)-enhanced and hybrid 
ensemble approaches achieve 78.9% and 82.1%, respectively. These figures represent relative 
improvements of 17.2% and 22.0%, respectively. It is important to note that Type II errors decline by 
52.1% in the hybrid model, which significantly reduces portfolio exposure to undetected stress. The 
Matthews Correlation Coefficient demonstrates a marked enhancement, progressing from 0.412 to 
0.664, thereby signifying a transition from moderate to strong classification performance in the face 
of class imbalance. 

 
 

Table 4  Classification performance metrics summary 
Model Accuracy Type I Error (False 

Positive) 
Type II Error (False 

Negative) 
Matthews Correlation 

Coefficient 
Balanced 
Accuracy 

Traditional 
Binary 

67.3% 18.6% (96/515) 45.2% (94/208) 0.412 0.706 

ML Enhanced 78.9% 14.2% (73/515) 26.4% (55/208) 0.593 0.796 
Hybrid 

Ensemble 
82.1% 11.8% (61/515) 21.6% (45/208) 0.664 0.832 

Notes: N=723 hold-out test observations (515 non-stress, 208 stress periods). Stress defined as ≥2 simultaneous conditions: VIX >30, 
credit spreads >200bps, S&P 500 5-day decline >5%. Matthews Correlation Coefficient accounts for class imbalance; Balanced Accuracy 
= (Sensitivity + Specificity) / 2. 

 
Figure 1 visualizes these performance differentials via confusion matrices. While the traditional 

model achieves 81.4% specificity, its sensitivity is limited to 54.8%. In contrast, the hybrid ensemble 
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delivers a superior balance, with 88.2% specificity and 78.4% sensitivity. When incorporating 
asymmetric cost structures (assuming false negatives are three times more costly than false 
positives), the hybrid approach reduces the composite cost score by 48.1% compared to the 
traditional baseline. 

 

  
   Fig. 1 Confusion matrices for stress classification models 

 
Table 5 presents formal hypothesis testing results. For Hypothesis 1, McNemar’s test confirms 

significant performance differences. The permutation test for SHAP interaction effects reveals that 
non-linear feature combinations contribute an additional 8.9% predictive power, validating that 
stress transmission operates through multiplicative channels. Furthermore, regime-stratified Kupiec 
tests show that traditional methods fail coverage tests during stress periods while ML models 
maintain adequacy. 

 
Table 5 Formal hypothesis testing results 

Hypothesis Test Method Test Statistic p-value Effect Size 

Accuracy difference test McNemar's test χ²=47.32 p<0.001*** Cohen's h=0.68 
Early warning superiority Wilcoxon signed-

rank test 
Z=4.89 p<0.001*** r=0.41 

SHAP interaction effects Permutation test 
(10,000 iterations) 

p=0.0047 p<0.01** Interaction 
gain=8.9% 

Coverage difference 
(stress vs. normal) 

Kupiec test by 
regime 

LR=6.82 (stress), 
LR=1.34 (normal) 

p<0.05* (stress), 
p=0.247 (normal) 

- 

ML vs. traditional VaR 
accuracy 

Diebold-Mariano 
test 

DM=3.78 p<0.001*** RMSE 
reduction=17.9% 

Static vs. adaptive model 
accuracy 

Paired t-test (by 
quarter) 

t(9)=5.67 p<0.001*** Cohen's d=1.89 

Forecast accuracy decay 
rate 

Linear regression of 
errors on time 

β=0.0023, 
SE=0.0006 

p<0.01** R²=0.412 

Unemployment weight 
(expansion vs. recession) 

Independent 
samples t-test 

t(721)=8.94 p<0.001*** Mean diff.=14% (28% 
vs. 42%) 

Interest rate weight 
(tightening vs. easing) 

Independent 
samples t-test 

t(721)=9.37 p<0.001*** Mean diff.=17% (35% 
vs. 18%) 

Feature importance 
stability test 

Friedman test 
across periods 

χ²(3)=34.67 p<0.001*** W=0.672 

Notes: All tests conducted on hold-out period (N=723). Bonferroni correction: αadj=0.00455 (0.05/11 tests); 10/11 tests remain 
significant. Effect sizes: Cohen's h/d (small=0.2, medium=0.5, large=0.8), r (small=0.1, medium=0.3, large=0.5). *** p<0.001, ** p<0.01, 
* p<0.0 
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For Hypothesis 2, the paired t-test comparing static versus continuously retrained models 
confirms that static accuracy degrades without adaptation. Independent samples t-tests reveal 
systematic feature importance shifts: unemployment weight increases significantly from 28% in 
expansions to 42% in recessions, while interest rate sensitivity rises from 18% during easing to 35% 
during tightening. 
 
4.2 Benchmark Comparison with Established Indices 
 

The framework has been benchmarked against three Federal Reserve stress indices: NFCI, STLFSI, 
and KCFSI. The sixth table sets out comparative metrics for the hold-out period. 

 
Table 6 Benchmark comparison with federal reserve stress indices hold-out test period 

Index Accuracy Precision Recall F1-
Score 

AUC-
ROC 

Early 
Warning 

(days) 

False 
Positive 

Rate 

Economic 
Value ($M) 

Panel A: Classification Performance Metrics 

Federal 
Reserve 

NFCI 

64.2% 0.612 0.571 0.591 0.698 1.8 26.7% -0.4 

St. Louis Fed 
STLFSI 

62.8% 0.598 0.554 0.575 0.681 1.5 28.3% -0.7 

Kansas City 
Fed KCFSI 

59.3% 0.567 0.523 0.544 0.652 1.2 31.2% -1.2 

Traditional 
Binary (this 

study) 

67.3% 0.641 0.598 0.619 0.723 2.1 23.4% 0.0 

ML 
Enhanced 

(this study) 

78.9% 0.756 0.734 0.745 0.841 4.7 14.2% 2.3 

Hybrid 
Ensemble 

(this study) 

82.1% 0.798 0.782 0.790 0.876 5.3 11.8% 3.7 

Panel B: Statistical Significance Tests (vs. Hybrid Ensemble) 

Test Test Statistic p-value Interpretation 

Accuracy vs. NFCI χ²=52.18 <0.001*** Highly significant improvement 
Accuracy vs. STLFSI χ²=58.94 <0.001*** Highly significant improvement 
Accuracy vs. KCFSI χ²=71.32 <0.001*** Highly significant improvement 

Early warning superiority χ²(5)=87.43 <0.001*** Superior across all comparisons 
Economic value vs. NFCI t(722)=6.89 <0.001*** $4.1M differential 

Panel C: Crisis Detection Summary (Six Major Events, 2022-2024) 

Model Events Detected Average Lead Time Performance Assessment 

NFCI 3/6 (50%) -0.2 days Limited detection, concurrent signals 
STLFSI 2/6 (33%) +0.7 days Poor detection, lagging signals 
KCFSI 1/6 (17%) +1.3 days Minimal detection capability 

Traditional Binary 6/6 (100%) -0.3 days Complete detection, slight lead 
ML Enhanced 6/6 (100%) -4.3 days Consistent early warning 

Hybrid Ensemble 6/6 (100%) -5.3 days Superior early warning 
Notes: N=723 observations. Fed indices interpolated to daily frequency (cubic spline for NFCI/STLFSI, forward-fill for KCFSI). Economic 
value from portfolio strategy in Section 3.3. Early warning measured as days before stress manifestation (VIX >30, credit spreads 
+50bps, or S&P 500 5-day decline >5%). 

 
Despite their institutional credibility, Fed indices exhibit accuracy rates between 59.3% and 

64.2%, significantly underperforming both the traditional binary baseline and the hybrid ensemble. 



Argumentation Based Systems Journal 

Volume 2, (2026) 51-75 

62 
 

The hybrid model improves AUC-ROC to 0.876 (vs. 0.698 for NFCI) and generates an annual economic 
gain of +$3.7M, whereas Fed indices yield negative returns relative to a passive benchmark. 

Most critically, Panel C reveals that Fed indices detected only 17–50% of the six major stress 
events during 2022–2024, often with lagging signals. In contrast, the hybrid ensemble detected 100% 
of these events with an average lead time of 5.3 days.  

Table 7 provides granular event-by-event analysis of crisis detection performance during the 
hold-out test period. The table documents six major stress events: the June 2022 Fed 75bps rate hike 
shock, September 2022 UK Gilt crisis, November 2022 FTX collapse and crypto contagion, March 2023 
Silicon Valley Bank failure, March 2023 Credit Suisse rescue, and August 2023 Fitch US downgrade. 
Federal Reserve indices detected only 17-50% of these events, typically with concurrent or lagging 
signals. In contrast, the ML-enhanced framework detected 100% of events with an average lead time 
of 4.3 days, while the hybrid ensemble achieved 100% detection with an average lead time of 5.3 
days. Notably, for the Silicon Valley Bank failure, the hybrid ensemble provided a 7-day early warning 
compared to the NFCI's 1-day lead, demonstrating the substantial practical value of adaptive machine 
learning approaches for institutional risk management. The summary statistics confirm that early 
warnings (lead ≥2 days) were achieved for all six events by the ML and hybrid models, whereas 
traditional Fed indices provided no early warnings for any event.  
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Table 7 Event-by-Event crisis detection and early warning performance hold-out test period 
Event Date Event Characteristics NFCI STLFSI KCFSI Traditional 

Binary 
ML 

Enhanced 
Hybrid 

Ensemble 

1. Fed 75bps Rate Hike 
Shock 

Jun 15, 
2022 

VIX: 31.2, Credit spreads: +45bps, 
S&P 500: -5.8% (5d) 

No No No Yes (-1 day) Yes (-4 
days) 

Yes (-5 days) 

2. UK Gilt Crisis Sep 26, 
2022 

VIX: 32.7, 30Y gilt yield spike: 
+130bps, GBP crash 

Yes (0 days) No No Yes (0 days) Yes (-3 
days) 

Yes (-4 days) 

3. FTX Collapse / Crypto 
Contagion 

Nov 11, 
2022 

VIX: 25.9, BTC: -22%, Credit 
market spillover concerns 

Yes (+2 
days, lag) 

Yes (+1 day, 
lag) 

No Yes (-1 day) Yes (-5 
days) 

Yes (-6 days) 

4. Silicon Valley Bank 
Failure 

Mar 10, 
2023 

VIX: 27.8→31.4, KRE ETF: -26%, 
Credit spreads: +72bps 

Yes (-1 day) No No Yes (-1 day) Yes (-6 
days) 

Yes (-7 days) 

5. Credit Suisse Rescue / 
UBS Merger 

Mar 19, 
2023 

VIX: 23.6, CDS spreads: +350bps, 
European bank stress 

Yes (0 days) Yes (0 days) No Yes (0 days) Yes (-4 
days) 

Yes (-5 days) 

6. Fitch US Downgrade & 
Aug Selloff 

Aug 1-4, 
2023 

VIX: 18.2→19.7, 10Y yield spike: 
+15bps, Risk-off rotation 

No No Yes (+1 
day, lag) 

Yes (0 days) Yes (-4 
days) 

Yes (-5 days) 

Summary Statistics 

Events Detected (Total) 
  

3/6 (50%) 2/6 (33%) 1/6 (17%) 6/6 (100%) 6/6 (100%) 6/6 (100%) 
Average Lead Time (days) 

  
-0.2 +0.7 +1.3 -0.3 -4.3 -5.3 

Early Warnings (Lead ≥2 
days) 

  
0/6 (0%) 0/6 (0%) 0/6 (0%) 0/6 (0%) 6/6 (100%) 6/6 (100%) 

Concurrent/Lagging Signals 
  

3/3 (100%) 2/2 (100%) 1/1 (100%) 4/6 (67%) 0/6 (0%) 0/6 (0%) 
False Negatives (Missed) 

  
3/6 (50%) 4/6 (67%) 5/6 (83%) 0/6 (0%) 0/6 (0%) 0/6 (0%) 
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4.3 Regime-Dependent Performance and Feature Evolution 
 
To analyze performance stability, we disaggregate results by stress regime. Table 8 presents 

performance metrics stratified by stress probability levels: low (<25%), moderate (25–50%), high (50–
75%), and severe (>75%). 

 
Table 8 Model performance by market regime 

Market 
Regime 

Traditional VaR 
Accuracy 

ML VaR 
Accuracy 

Traditional Vol 
Forecast 

ML Vol 
Forecast 

Risk Management 
Implication 

Low Stress 94.2% coverage 95.1% 
coverage 

RMSE: 0.0087 RMSE: 
0.0079 

Marginal ML advantage 

Moderate 
Stress 

91.3% coverage 94.7% 
coverage 

RMSE: 0.0134 RMSE: 
0.0098 

Significant ML 
improvement 

High Stress 87.8% coverage 93.9% 
coverage 

RMSE: 0.0198 RMSE: 
0.0121 

Critical ML advantage 

Severe Stress 82.1% coverage 91.2% 
coverage 

RMSE: 0.0267 RMSE: 
0.0156 

Essential ML 
requirement 

Note: Coverage = percentage of actual losses within predicted VaR bounds. RMSE = volatility forecasting accuracy (annualized). ML 
models show increasing relative advantage during stress periods, supporting adaptive regime weighting. 

 
Machine learning advantages escalate systematically with stress intensity. During low-stress 

conditions, the performance gap is marginal. However, in severe stress regimes, traditional coverage 
degrades to 82.1% while ML models maintain 91.2%. Similarly, volatility forecasting improvement 
(RMSE reduction) widens from 9.2% in low stress to 41.6% in severe stress. 

Figure 2 visualizes this divergence. Panel B shows that while ML models provide minimal lead 
time (1-2 days) for minor stress events, they deliver substantial advance warnings (6-8 days) for 
severe episodes. Panel C translates this into economic value: severe stress periods—occurring only 
5% of the time—contribute 43% of total portfolio gains, confirming the model’s value is concentrated 
in tail-risk mitigation. 

 

 
Fig. 2 Model performance across market regimes  
 
Table 9 documents the temporal evolution of feature importance, testing the mechanism behind 

these gains. 
 
 

Table 9 Feature importance temporal evolution and regime-dependent transmission mechanisms 
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Panel A: Aggregate Feature Categories 

Feature Category 2015-
2019 

2020-
2021 

2022-
2023 

2024 Mean Std.Dev. CV (%) Stability Score 

Volatility 
Measures 

32.4 38.7 29.8 31.2 33.0 3.42 10.4 High 

Credit Indicators 23.8 31.4 26.7 24.9 26.7 3.02 11.3 High 
Macroeconomic 

Variables 
18.6 12.3 24.8 22.7 19.6 5.13 26.2 Medium 

Technical 
Indicators 

15.9 11.2 12.4 13.8 13.3 1.89 14.2 High 

Market Structure 9.3 6.4 6.3 7.4 7.4 1.38 18.6 High 

Panel B: Most Stable Features (CV < 20%) 

Feature 2015-
2019 

2020-
2021 

2022-
2023 

2024 Mean Std.Dev. CV (%) Stability Score 

20-day Rolling 
Volatility 

18.3 19.1 18.7 18.0 18.5 0.42 2.3 Dominant 

5-day Rolling 
Volatility 

13.2 14.7 13.9 13.8 13.9 0.60 4.3 Persistent 

Lagged Bankruptcy 
Rate 

15.2 16.3 14.8 15.1 15.4 0.61 4.0 Stable 

RSI Momentum 
Indicator 

12.4 13.1 11.8 12.5 12.5 0.53 4.2 Consistent 

Volume Volatility 
Ratio 

4.7 5.2 4.8 4.5 4.8 0.29 6.0 Reliable 

Panel C: Most Variable Features (CV ≥ 40%) - Supporting H2 

Feature Expansion Recession Tightening Easing Mean Range CV (%) 

Unemployment Rate 28.1 42.3 35.7 30.2 34.1 14.2 41.6 
Interest Rate Changes 35.4 18.2 41.6 15.8 27.8 25.8 52.1 

Credit-Liquidity 
Interaction 

8.7 22.4 18.3 11.2 15.2 13.7 45.3 

GDP Growth Rate 7.8 21.7 12.4 9.3 12.8 13.9 54.2 
Cross-Correlation Shifts 3.4 12.7 8.9 4.1 7.3 9.3 63.8 

Panel D: Statistical Tests for Temporal Stability 

Test Description Test Statistic p-value Interpretation 

Friedman test (feature rankings across 4 periods) χ²(3) = 34.67 <0.001*** Significant variation 
Kendall's coefficient of concordance W = 0.672 <0.001*** Strong agreement 

Unemployment weight (Expansion vs. Recession) t(721) = 8.94 <0.001*** 14.2pp difference*** 
Interest rate weight (Tightening vs. Easing) t(721) = 9.37 <0.001*** 25.8pp difference*** 

Spearman rank correlation (Val. vs. Test periods) ρ = 0.923 <0.001*** High consistency 

Panel E: Post-Hoc Pairwise Comparisons (Bonferroni-corrected) 

Period Comparison Z-statistic Unadjusted 
p 

Adjusted p Significant 

2015-2019 vs. 2020-2021 (COVID) 3.87 0.0001 0.0006 Yes*** 
2020-2021 vs. 2022-2023 (Tightening) 4.23 <0.0001 <0.0001 Yes*** 

2022-2023 vs. 2024 (Stabilization) 1.94 0.052 0.312 No 
2015-2019 vs. 2022-2023 2.76 0.006 0.036 Yes* 

2015-2019 vs. 2024 2.41 0.016 0.096 Marginal 
2020-2021 vs. 2024 3.52 0.0004 0.0024 Yes** 

Notes: SHAP-based importance across four periods testing Hypothesis 2. CV <20% = high stability, ≥40% = strong regime-dependence. 
Panel C shows unemployment weight: 28.1% (expansion) to 42.3% (recession), 14.2pp difference (t=8.94, p<0.001). Panel E: Bonferroni-
corrected pairwise comparisons (αadj=0.0083). *** p<0.001, ** p<0.01, * p<0.05 

 
Panel A shows that while volatility and credit indicators remain consistently important (CV ≈ 10%), 

macroeconomic variables exhibit significant regime dependence (CV=26.2%). Panel C identifies 
specific drivers of this variation: unemployment rate importance rises by 14.2 percentage points 
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during recessions, and interest rate sensitivity increases by 25.8 percentage points during tightening 
cycles. Friedman’s test (χ²=34.67, p<0.001$) confirms these rankings change systematically across 
periods, validating the necessity of dynamic weighting. 

Figure 3 presents aggregate SHAP values. Short-term volatility measures (20-day and 5-day) 
dominate predictive power (~18% and 14%), followed by lagged bankruptcy rates (15%). However, 
no single feature exceeds 19% importance, highlighting the composite nature of financial stress. 

  
Fig. 3 SHAP feature importance for ML stress classification 

 
4.4 Risk Forecasting Performance 
 

Beyond binary classification, we evaluate continuous risk forecasting capabilities. Figure 4 plots 
the ML stress probability series (2015–2024), showing distinct spikes preceding major crises (e.g., 
March 2020 COVID crash, March 2023 banking failure) while maintaining low baselines during stable 
periods. 

  
 Fig. 4 ML-enhanced stress ındicator time series 
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Table 10 presents detailed VaR prediction performance comparisons between traditional 
historical simulation and the machine learning-enhanced Random Forest approach. At the 95% 
confidence level, the Random Forest model achieves unconditional coverage with a p-value of 0.156, 
demonstrating superior statistical adequacy. The mean absolute error decreases from 0.389% to 
0.312%, representing an 18.9% improvement in capital efficiency. At the 99% confidence level, similar 
patterns emerge, with the Random Forest model achieving a p-value of 0.089 for unconditional 
coverage compared to 0.028 for historical simulation. These results confirm that the ML-enhanced 
approach not only satisfies regulatory coverage requirements but also delivers substantial economic 
value through reduced capital requirements while maintaining risk management integrity. 

 
Table 10 VaR prediction performance: traditional vs. machine learning 

Method Confidence 
Level 

Unconditional 
Coverage (p-

value) 

Conditional 
Coverage (p-

value) 

MAE 
(%) 

RMSE 
(%) 

Quantile 
Loss 

Economic 
Significance 

Historical 
Simulation 

95% 0.032* 0.018* 0.389 0.542 0.195 Baseline 

Random 
Forest 

95% 0.156 0.234 0.312 0.445 0.158 +18.9% 
improvement 

Historical 
Simulation 

99% 0.028* 0.041* 0.478 0.687 0.239 Baseline 

Random 
Forest 

99% 0.089 0.167 0.398 0.567 0.198 +17.2% 
improvement 

Note: Asterisks indicate rejection of null hypothesis at 5% significance level. Higher p-values indicate better coverage performance. MAE 
and RMSE are measured as percentage of portfolio value. Economic significance measured as reduction in capital requirements while 
maintaining coverage. 

 
Table 11 documents the comparative volatility forecasting accuracy between traditional GARCH 

(1,1) models and the LSTM neural network across different market regimes and forecast horizons. 
During low-stress periods, the LSTM achieves a 1-day RMSE of 0.0079 compared to 0.0087 for GARCH, 
with directional accuracy improving from 58.3% to 64.7%. The performance differential amplifies 
substantially during high-stress regimes, where LSTM reduces 1-day RMSE from 0.0156 to 0.0121 and 
improves directional accuracy from 52.1% to 68.9%. The Diebold-Mariano test statistics confirm 
statistically significant superiority across all horizons. These findings demonstrate that the LSTM 
architecture captures nonlinear volatility dynamics that traditional econometric models cannot 
detect, with the relative advantage increasing precisely when accurate forecasting is most critical for 
risk management. 

 

Table 11 Volatility forecasting accuracy: GARCH vs. LSTM 

Model Market 

Regime 

1-Day 

RMSE 

5-Day 

RMSE 

20-Day 

RMSE 

Diebold-Mariano 

Test 

Directional 

Accuracy 

GARCH 

(1,1) 

Low Stress 0.0087 0.0124 0.0198 Baseline 58.3% 

LSTM Low Stress 0.0079 0.0108 0.0167 2.34** 64.7% 

GARCH 

(1,1) 

High Stress 0.0156 0.0289 0.0445 Baseline 52.1% 

LSTM High Stress 0.0121 0.0203 0.0298 3.78*** 68.9% 

GARCH 

(1,1) 

Overall 0.0112 0.0189 0.0298 Baseline 56.2% 

LSTM Overall 0.0094 0.0147 0.0214 4.12*** 66.1% 
Note: RMSE measured as annualized volatility units. Diebold-Mariano test statistics for forecast accuracy comparison (* p<0.05, *** 
p<0.01). Directional accuracy represents percentage of correct volatility direction predictions. 
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4.5 Generalization and Robustness Assessment 
 
Extensive out-of-sample validation is conducted in order to avoid overfitting. As illustrated in 

Table 12, comprehensive generalization diagnostics are presented for all model components. Panel 
A documents XGBoost stress classification performance, showing accuracy declining marginally from 
81.3% (training) to 78.9% (hold-out test), with a degradation factor of 1.03 indicating no overfitting. 
Panel B reports on the performance of Random Forest Value at Risk (VaR), with coverage accuracy 
maintaining stability at 95.1% in the hold-out period and economic value gains of 18.9%. As 
demonstrated in Panel C, the LSTM volatility forecasting model exhibits stability, with an overall Root 
Mean Square Error (RMSE) that increases marginally from 0.0084 to 0.0094 across periods. Panel D 
provides critical generalization diagnostics. The training-test accuracy gap of 2.4 percentage points 
falls well below the 5 pp threshold, which is typically indicative of overfitting. However, the cross-
period prediction correlations (r = 0.847, p < 0.001) and feature importance rank correlations (ρ = 
0.923, p < 0.001) confirm consistent model behavior. The average degradation factor of 1.02 across 
all models demonstrates excellent generalization to unseen market conditions. 

 
Table 12 Model performance across training, validation, and hold-out test periods generalization and 
overfitting assessment 

Model & Metric Training (Jan 
2015–Dec 

2019) 

Validation (Jan 
2020–Jun 2022) 

Hold-out Test (Jul 
2022–Dec 2024) 

Degradation 
Factor 

Overfitting 
Assessment 

Panel A: XGBoost Stress Classification 

Accuracy (%) 81.3 77.8 78.9 1.03 No overfitting 
AUC-ROC 0.867 0.824 0.841 1.03 Excellent 
F1-Score 0.792 0.753 0.745 1.06 Acceptable 

False Positive Rate 
(%) 

11.2 13.8 14.2 0.79 Stable 

Panel B: Random Forest VaR (95% confidence) 

Coverage Accuracy 
(%) 

96.8 94.9 95.1 1.02 No overfitting 

Mean Absolute 
Error (%) 

0.287 0.301 0.312 0.92 Acceptable 

RMSE (%) 0.398 0.429 0.445 0.89 Good 
Economic Value (% 

gain) 
21.4 19.7 18.9 1.13 Stable 

Panel C: LSTM Volatility Forecasting 

Overall RMSE 0.0084 0.0089 0.0094 0.89 Excellent 
Low Stress RMSE 0.0071 0.0076 0.0079 0.90 Excellent 
High Stress RMSE 0.0109 0.0116 0.0121 0.90 Excellent 

Directional 
Accuracy (%) 

68.7 65.3 66.1 1.04 Good 

Panel D: Generalization Diagnostics 

Training-Test Gap 
(XGBoost accuracy) 

- - 2.4 pp - No overfitting 
(<5pp threshold) 

Validation-Test Gap 
(XGBoost accuracy) 

- - -1.1 pp - Improved 
generalization 

Cross-period 
prediction 
correlation 

- - r=0.847*** - Strong consistency 

Feature importance 
rank correlation 

- - ρ=0.923*** - Stable patterns 
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Average 
degradation across 

all models 

- - 1.02 - Excellent 
generalization 

Notes: Training (Jan 2015-Dec 2019, N=1,304): initial estimation via 5-fold time-series CV. Validation (Jan 2020-Jun 2022, N=652): 

model selection, encompassing COVID-19 episode. Hold-out test (Jul 2022-Dec 2024, N=723): completely unseen data for final 

evaluation, including six major events.. Degradation Factor: training/test ratio for accuracy metrics, test/training for error metrics 

(values near 1.0 indicate stable generalization). Panel D: Training-Test Gap <5pp threshold indicates no overfitting; Validation-Test 

Gap -1.1pp suggests improved generalization rather than overfitting. Regularization: XGBoost (max_depth=5, min_child_weight=3, 

gamma=0.1), Random Forest (max_features='sqrt', min_samples_leaf=5), LSTM (dropout=0.2, early stopping patience=10). *** 

p<0.001 

 
Table 13 documents robustness testing results across distinct crisis episodes within the validation 

and hold-out periods. During the 2020-2021 COVID period characterized by high volatility, the ML 
framework achieves 89.1% accuracy compared to 78.3% for traditional approaches, with a 
degradation factor of 1.12x. The 2022 rate hike period, representing a regime change environment, 
yields 91.4% ML accuracy versus 82.7% traditional accuracy, with minimal degradation (1.08x). The 
2023 banking crisis, characterized by credit stress contagion, demonstrates the largest performance 
differential, with ML achieving 87.6% accuracy compared to 71.2% for traditional methods. Overall 
out-of-sample performance shows 89.7% ML accuracy versus 79.1% traditional accuracy, with a 
stable degradation factor of 1.09x. These results confirm that the adaptive framework maintains 
robust performance across heterogeneous crisis types, with lower degradation indicating superior 
generalization compared to static approaches. 

 
Table 13 Robustness testing results 

Validation Period Traditional Performance ML Performance Stability Metric Degradation Factor 

2020-2021 (COVID) 78.3% accuracy 89.1% accuracy High volatility 1.12x 

2022 (Rate Hikes) 82.7% accuracy 91.4% accuracy Regime change 1.08x 

2023 (Banking Crisis) 71.2% accuracy 87.6% accuracy Credit stress 1.15x 

Overall Out-of-Sample 79.1% accuracy 89.7% accuracy Stable 1.09x 
Note: Accuracy measured as composite score across VaR, volatility, and stress predictions. Degradation factor represents performance 
decline from in-sample to out-of-sample testing. Lower degradation indicates better generalization 

 
5. Discussion 
 
5.1 Key Findings and Theoretical Validation 
 

The present study addresses three critical deficiencies in financial stress measurement. Firstly, 
the structural inadequacy of static linear aggregation is identified. Secondly, the absence of adaptive 
recalibration mechanisms is highlighted. Thirdly, the lack of actionable early warning capabilities is 
emphasized. The findings of the present study provide robust empirical validation for two core 
theoretical propositions that challenge conventional approaches to systemic risk monitoring. 

Firstly, it is necessary to confirm that financial stress transmission operates through non-linear 
threshold effects rather than the linear aggregation assumed by traditional indicators. The 
substantial predictive capacity of interaction terms in our model directly corroborates theoretical 
predictions concerning financial accelerator mechanisms [10] and phase transitions in network 
contagion [3]. In contrast to the constant factor loadings assumed by traditional indices such as the 
NFCI, our findings indicate that risk amplification is regime-dependent. The failure of linear models 
during periods of stress, in contrast to their efficacy during normal conditions, supports the 
hypothesis that contagion mechanisms are contingent on counterparty leverage thresholds that vary 
across regimes [17]. This finding calls into question regulatory frameworks that assume linear scaling 
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of risk factors, aligning with recent complex systems research [29], which posits that stability is 
governed by non-linear interactions undetectable by static PCA. 

Secondly, the temporal stability analysis confirms that stress thresholds evolve in response to 
macroeconomic regime transitions. The observed shifts in feature importance—where real economy 
variables dominate during recessions and monetary variables during tightening cycles prove the first 
comprehensive empirical quantification of Hamilton's [31] regime-switching framework using 
interpretable machine learning. These transitions are not arbitrary artifacts but rather follow 
predictable patterns that can be detected. By operationalizing recent methodological advances in 
detecting multiple level shifts in time series [16], it is demonstrated that adaptive models can 
successfully capture the time-varying tail dependence [48] that static indicators miss. This finding 
serves to underscore the dynamic nature of financial stress, highlighting the necessity of monitoring 
tools that evolve in tandem with market fluctuations. 

 
5.2 Practical Implications for Financial Institutions 

 
The transition from binary crisis flags to continuous probability assessments enables graduated 

risk management protocols that were previously impractical with static threshold approaches. 
Financial institutions have the capacity to operationalize this indicator through the implementation 
of tiered response frameworks, thereby transcending the binary decision-making processes that 
often result in so-called "cliff effects." For instance, low-probability signals can initiate routine 
monitoring, intermediate probabilities can prompt enhanced liquidity surveillance, and high-
probability signals can result in tactical defensive positioning. This approach directly addresses the 
limitations identified by Moffo (2024), providing the granular risk signals necessary for optimizing 
capital buffers without aggressive deleveraging. 

The documented early warning capability enables institutions to execute defensive strategies 
prior to market stress peaks, a period when transaction costs remain manageable and counterparty 
willingness to absorb risk transfers persists. By identifying vulnerabilities days before the 
manifestation of volatility, the model provides a critical opportunity to reduce exposure to specific 
sectors (e.g., regional banking) identified by the SHAP analysis. In addition, the rigorous backtesting 
of our risk forecasts, aligned with multi-objective elicitability criteria [26], suggests tangible benefits 
for regulatory capital efficiency. The ML-enhanced Value-at-Risk (VaR) model has been demonstrated 
to satisfy conditional coverage tests in instances where historical simulation has been unsuccessful, 
thus offering a potential pathway for reducing Basel regime penalty multipliers. This finding indicates 
that systemically important institutions can expect to see significant opportunities for capital 
redeployment, thereby demonstrating the capacity for algorithmic innovation to simultaneously 
enhance safety and economic efficiency. 

 
5.3 Regulatory and Policy Implications 
 

The marked discrepancy in performance between our adaptive framework and established 
Federal Reserve indices underscores the pressing necessity for regulatory infrastructure 
modernization. Central banks reliant upon static PCA-based indices encounter systematic blind spots 
during regime transitions, precisely when crisis risks escalate most rapidly. The lagging nature of 
these indices suggests that they function effectively as "thermometers" measuring current heat but 
fail as "barometers" predicting incoming storms. 

In accordance with the necessity for contemporary oversight, regulatory authorities should give 
consideration to a dual-track monitoring framework. This approach involves the maintenance of 
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existing indices (NFCI, STLFSI) to ensure historical continuity and transparency, whilst concurrently 
deploying ML-enhanced indicators for real-time surveillance. This redundancy is underpinned by a 
complementary strengths approach, whereby static methods provide stability, while adaptive 
methods deliver the sensitivity required for early detection [34]. 

Moreover, the findings of this study lend support to the incorporation of regime-dependent 
scenarios into regulatory stress testing (e.g., CCAR). Current stress tests frequently employ 
predefined macroeconomic pathways, irrespective of the prevailing economic regime. The 
integration of machine learning (ML)-detected thresholds would empower regulators to adapt the 
scenario severity in accordance with real-time vulnerabilities. To illustrate this, one could consider 
the intensification of interest rate shock scenarios when the model detects heightened sensitivity to 
monetary policy. Furthermore, the activation of the countercyclical capital buffer (CCyB) in relation 
to continuous stress probabilities has the potential to address the procyclicality issues inherent in 
credit-to-GDP gap measures, thereby providing more timely activation signals that align with the 
actual financial cycle [21]. 

Lastly, this study shows that SHAP-based interpretability can meet transparency standards, which 
is a common concern among regulators [45]. By quantifying precisely why a stress signal is rising (e.g., 
"due to liquidity drying up" vs. "due to credit spreads"), regulators can demand targeted remediation 
plans rather than broad-spectrum capital hikes. 
 
5.4 Comparison with Existing Literature 

 
The present approach extends the machine learning finance literature by bridging the gap 

between predictive accuracy and institutional utility. Whilst earlier research [5,11] has shown the 
capacity of gradient boosting for classification, these studies have predominantly concentrated on 
binary outcomes or particular transmission channels in isolation. The advancement of this literature 
is achieved through the synthesis of comprehensive macro-financial indicators into a unified, regime-
adaptive framework. In contrast to siloed applications that predict only bank failures or sovereign 
defaults, our composite indicator captures systemic stress across equity, credit, and funding markets 
simultaneously. 

Furthermore, a methodological solution to the stationarity bias prevalent in earlier studies is 
provided. Whilst earlier studies frequently presupposed constant feature importance, our dynamic 
weighting mechanism explicitly models the evolution of transmission channels. This finding 
corroborates the predictions made by Ang and Timmermann [6] concerning time-varying 
parameters, yet it does so via an interpretable, data-driven framework as opposed to complex 
Bayesian estimations. By demonstrating the capacity of machine learning (ML) models to generalize 
across a range of heterogeneous crisis types, including pandemic-induced volatility and inflation 
shocks, the study refutes the assertion that such models are inherently constrained to specific 
historical samples [32]. 

 
5.5 Limitations and Caveats 
 

The present study is an empirical analysis that focuses exclusively on US equity markets over 
2015-2024. This limits direct generalizability to international markets, fixed income, or foreign 
exchange stress episodes, as emphasized in cross-market validation literature. While the theoretical 
underpinnings concerning non-linear thresholds and regime-dependent transmission should be 
applicable to other asset classes and jurisdictions, empirical validation remains necessary. Emerging 
markets, characterized by thinner liquidity and divergent institutional frameworks, may manifest 



Argumentation Based Systems Journal 

Volume 2, (2026) 51-75 

72 
 

distinct transmission dynamics, necessitating adapted feature engineering, as evidenced in Bekaert 
and Harvey's [9] research on market integration and volatility in developing economies. The 2015 
start date is not inclusive of major historical crises that could offer additional validation, though 
extending analysis faces data availability constraints for high-frequency volatility measures before 
2000. 

Even though SHAP-based explainability addresses concerns regarding black-box models, the 
hybrid ensemble combining XGBoost, Random Forest, and LSTM involves computational complexity 
that exceeds that of simple linear regressions, which are favored by some regulatory authorities for 
transparency reasons. The adaptive weighting mechanism introduces path-dependent predictions, 
whereby identical input features may yield different stress probabilities depending on recent history. 
This complicates regulatory validation in comparison to static models. These concerns are consistent 
with the findings of Gu et al., [36] on the risks of overfitting in machine learning asset pricing 
applications and the critique of multiple testing by Harvey et al., [32]. However, our walk-forward 
validation and degradation analysis suggest robust out-of-sample generalization. 

Walk-forward validation has been shown to confirm robust generalization across heterogeneous 
crises. However, it has been demonstrated that unprecedented structural breaks—such as regime 
shifts from central bank digital currencies, quantum computing threats, or climate-induced 
simultaneous failures—may exceed the coverage of the training distribution. The documented 
temporal decay assumes gradual evolution; however, abrupt structural breaks could trigger more 
severe degradation, requiring immediate recalibration. It is incumbent upon institutions to maintain 
parallel monitoring systems that can detect anomalous prediction patterns. Such systems should be 
designed to trigger a manual review and, where appropriate, initiate emergency retraining. 

To ensure successful implementation, it is essential to establish a comprehensive data 
infrastructure. This should include real-time market data feeds, macroeconomic indicators with 
minimal publication lag, and computational resources for daily model inference. It is evident that 
smaller institutions lacking dedicated quantitative teams may encounter adoption barriers despite 
the documented benefits. This suggests a potential role for centralized regulatory provision, similar 
to the Federal Reserve's existing NFCI dissemination. The process of feature engineering necessitates 
a degree of specialized knowledge to adapt to the particularities of each institution, thus precluding 
the possibility of a "plug-and-play" implementation. Instead, it demands continuous collaboration 
between the quantitative teams and the practitioners of risk management. 

 
4. Conclusions 
 

This study proposes a novel approach to measuring financial stress by integrating machine 
learning with dynamic threshold theory. This integration is purported to overcome the structural 
limitations of static indicators. The present study establishes that financial stress transmission is 
inherently non-linear and regime-dependent, characteristics that render traditional linear 
aggregation methods insufficient for real-time early warning. The development of a framework that 
adapts its weighting mechanism to evolving market conditions has been demonstrated to provide a 
robust solution that delivers superior classification accuracy, actionable early warnings, and tangible 
economic value in comparison to established benchmarks. The findings suggest that the future of 
systemic risk monitoring lies not in static indices, but in adaptive, interpretable systems capable of 
capturing the fluid nature of modern financial contagion. This transition offers regulators and 
institutions a dual pathway to enhanced stability, namely the better detection of emerging threats 
and the more efficient allocation of capital through graduated, data-driven risk management. 
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